PLANACON MCP-PMT for use in Ultra-High Speed Applications

PHOTONIS

Planacon[™] MCP-PMTs

- Two inch *square flat* PMT with dual MCP multiplier.
- Anodes, 2x2, 8x8 and 32 x 32 configurations.
- Improved Open Area Ratio device now available
- Bi-alkali cathode on quartz faceplate.
- Easily tiled, low profile, excellent time resolution, excellent uniformity.

PHOTONIS

PLANACON Family

- 50mm Square family of MCP based PMTs
 - 8500X 4 anode
 - 8501X 64 anode
 - 8502X 1024 anode
- New improved Active Area Variants available with 86% active area, 85002/85012/85022
- 64 anode PMT available with integrated Angerlogic readout
- Gated High Voltage Power Supply available

PHOTONIS

PHOTONIS

Timing Limitations

- Detected Quantum Efficiency (DQE)
 - Photocathode QE
 - Collection efficiency
 - Secondary emission factor of first strike
- Electron optics and amplification
 - Cathode MCP Gap and Voltage
 - Pore-size, L:D, and voltage of MCP
 - MCP-Anode Gap and Voltage
- Signal extraction

PHOTONIS

Detected Quantum Efficiency

DQE Component	Current	Next Gen	Limit
QE @ 420nm	20%	28%	32%
Open Area of MCP	50%	70%	80%
First Strike	85%	90%	95%
DQE for Timing	8.5%	17.6%	24.3%
Multi-photon TTS improvement	1.0	.69	.59

PHOTONIS

DQE Efforts

Photocathode QE

- Developing new cathode recipe for transfer system based on nuclear medicine bi-alkali which has 35% QE
- Collection efficiency
 - 10 micron pore improves open area to ~60%
 - Over-etching of glass can increase this to 70%
 - Funneled pores can increase this to > 80%
- Secondary yield
 - Current yield is 2.3 3.0
 - Deposition of enhancement films such as MgO₂ can improve this to 5.0 or higher

PHOTONIS

Cathode-MCP Gap

- Limitations

- Recoil electrons (cause long TT shoulder)
 - Decreased DQE for leading edge timing measurements
 - Decrease imaging capabilities
- Transit time (Variations in p.e. velocity)
 - Dominated by transverse momentum of the photoelectrons
 - Becomes worse at higher photon energies
- Counter-measures
 - Reduce physical gap
 - Significant reduction in transit time, reducing effects of transverse momentum
 - Increase voltage
 - Higher acceleration reduces transit time and effects of transverse momentum

PHOTONIS

Recoil Electrons

 Scattered electrons can travel a maximum of 2L from initial strike
Produces a TTS shoulder
Reduces the DQE for direct detection
PHOTONIS
10 Picosecond Timing Workshop 28 April 2006

10

85011 430 Drop Faceplate

Cathode – MCP gap is decreased from to ~0.85mm
Photocathode active area is reduced to 47mm from 50mm

Effect of Reduced PC-MCP Gap

C. Field, T. Hadig, David W.G.S. Leith, G. Mazaheri, B. Ratcliff J. Schwiening, J. Uher,+ and J. Va'vra*
Development of Photon Detectors for a Fast Focusing DIRC
5th International workshop on Ring Imaging Cherenkov Counters (RICH 2004), 11/30/2004-12/5/2004, Playa del Carmen, Mexico

PHOTONIS

Cathode – MCP Transit Time

 Increased voltage or decreased gap can drastically reduce the transit time, and therefore transit time spread

MCP Contributions

- MCP amplification is responsible for anode risetime
 - Secondary electron trajectories result in variations in time between strikes.
- Pore-size
 - Reduced pore size decreases thickness for the same amplification, reducing transit time
 - L:D sets the gain assuming same applied field
 - Want small pore size, minimum L:D and high field
 - Bias angle increases transit time and amplification, can reduce L:D and increase bias to keep timing properties the same but improve lifetime

PHOTONIS

Amplification in Pore

- For 40:1 L:D there are typically 10 strikes (2¹⁰ ~ 10³ gain single plate)
- Number of strikes depends on velocity of individual secondary electrons

PHOTONIS

MCP Transit Time

 Transit time assumes 10 strike in 40:1 L:D with 1000V applied per plate, Chevron configuration, cold secondary electrons

Anode-MCP Gap

– Limitations

- Transit time (Variations in secondary electron velocities)
 - Dominated by location of origination in MCP
 - Also affected by transverse momentum
- Capacitance and Inductance between the two electrodes
 - Can effect signal quality at the anode
- Counter-measures
 - Reduce physical gap
 - Significant reduction in transit time, reducing effects of transverse momentum
 - Increase voltage
 - Higher acceleration reduces transit time and effects of transverse momentum
 - Provide a ground plane or pattern on the anode
 - Reduce resistance of MCP-Out electrode

Other Considerations

- Current limitations
 - Have received MCPs with 300uA strip current, achieve 30uA linear operation
 - Can increase to 60uA with electrode change
- Lifetime
 - Capital investment in better electron scrub system
 - Recent modifications to the process which increases lifetime, measurements in process
 - Increased bias angle up to 19 degrees
 - Gating of Cathode during periods of no data collection
- Anode configuration
 - Can modify electrode pattern on anodes to include ground plane or ground pattern for improved signal extraction

PHOTONIS

Future Directions

- Improved DQE
- Improved average anode current (50 100 uA)
- Improved lifetime
- Step faceplate to optimize timing
- Reduce anode-MCP gap to investigate effect on signal integrity and TTS
- MCP input treatment to optimize DQE and reduce recoiling effect (increased Open Area and high yield coating)
- New anode configurations with integral ground plane or ground pattern to improve

