Searches for Electric Dipole Moments - EDMs

• Why are they important (even after LHC)?
• Which EDMs are important?
• What is the future of EDMs and how do we get there?
EDMs violate Time Reversal & Parity Symmetry

Quantum Picture - Discrete Symmetries

Assume \(\tilde{\mu} = \mu \frac{\vec{J}}{J} \) and \(\tilde{d} = d \frac{\vec{J}}{J} \)

no spin \(\rightarrow \) no EDM

Then non-relativistic Hamiltonian is

\[H = \tilde{\mu} \cdot \vec{B} + \tilde{d} \cdot \vec{E} \]

P-even \hspace{1cm} T-even
P-odd \hspace{1cm} T-odd

Non-zero EDM violates both T and P
& assuming CPT invariance it also violates CP
Note: Nucleon EDM also appears in Electron Scattering

- **Nucleon EM current:**

\[
\langle n \mid J_{\mu}^{EM} \mid n \rangle = \bar{u}_N \left[F_1(q^2)\gamma_\mu + \frac{F_2(q^2)}{2M_N} \sigma_{\mu\nu} q_\nu + F_A(q^2)(iq^2 \gamma_\mu \gamma_5 - 2M_N q_\mu \gamma_5) + \frac{F_3(q^2)}{2M_N} \gamma_5 \sigma_{\mu\nu} q_\nu \right] u_N
\]

- **F\textsubscript{3}** related to nucleon EDM:
 \[d_n = \lim_{q^2 \to 0} \frac{F_3(q^2)}{2M_N} \]

- **Also related to Transversity!**

\[
\delta q = \int_0^1 dx \left[h_1(x) - \bar{h}_1(x) \right]
\]

\[d_n = \sum_q d_q \delta q \]

Tensor Charge

Relates neutron EDM to quark EDM \(d_q \)
New CP Violation May Help Resolve Matter/Antimatter Asymmetry of the Universe

• **Sakharov Criteria**
 - Particle Physics can produce matter/antimatter asymmetry in the early universe *IF* there is:
 - Baryon Number Violation (need only very small amount)
 - CP & C violation (need much bigger CP violation than in Standard Model)
 - Departure from Thermal Equilibrium
How big is the are EDMs?

e.g. neutron:

\[+\frac{2}{3}e \quad \text{u-quark} \]

\[-2\left(\frac{1}{3}e\right) \quad \text{d-quarks} \]

If \(l \sim 0.1 \, r_n \)

\[d_n \sim 5 \times 10^{-14} \, \text{e-cm} \]

But Experiment says

\[d_n < 3 \times 10^{-26} \, \text{e-cm} \]
Origin of elementary EDMs

• Standard Model EDMs are due to CP violation in the quark weak mixing matrix CKM (e.g. the K^0/B^0-system) but...
 - e^- and quark EDM’s are zero at 1 and 2 loops
 - Need at least three loops to get EDM’s (electron actually requires 4 loops!)
 • Thus EDM’s are VERY small in standard model

\[\text{e.g. neutron EDM in Standard Model is } \sim 10^{-32} \text{ e-cm} \left(\sim 10^{-19} \text{ e-fm} \right) \]

Experimental neutron limit: $< 3 \times 10^{-26} \text{ e-cm}$
Is there a “natural” source for new CP violation & EDMs?

• New physics (e.g. SUSY/other) often has additional CP violating phases in added couplings
 - New phases: (ϕ_{CP}) should be ~ 1 (why not?)

• Contribution to EDMs depends on masses of new particles

 \[d_n \sim 10^{-24} \text{ e-cm} \times \sin\phi_{CP}(1 \text{ TeV}/M_{SUSY})^2 \]

Note: experimental limit: \[d_n < 0.03 \times 10^{-24} \text{ e-cm} \]
Impact of non-zero EDM

- Must be new Physics
- Sharply constrains models beyond the Standard Model (especially with LHC data)

Example for Chromo-EDMs

McKeen, Pospelov & Ritz
hep-ph 1303.1172

Heavy sfermions >50 TeV
1 TeV gauginos
Present EDM Limits
Particle EDM Zoo (where to look)

- Paramagnetic atoms and polar molecules are very sensitive to d_e

- Diamagnetic atoms are sensitive to quark “chromo-“EDM \((\text{gluon}+\text{photon}) = \tilde{d}_q \) and Θ_{QCD}

- Neutron and proton sensitive to d_q, \tilde{d}_q & Θ_{QCD}

Observation or lack thereof in one system does not predict results for other systems
Note: d_e and storage ring EDMs discussed earlier ...

- D. Kawall
 - Recent Results and Progress on Leptonic and Storage Ring EDM Searches
- A. Lehrach
 - Storage Ring Based EDM Search
- A. Saleev
 - Studies of Systematic Limitations in EDM Searches in Storage Rings

- Here we will focus on hadronic EDMs
Origin of Hadronic EDMs

- Hadronic (strongly interacting particles) EDMs are from
 - θ_{QCD} (an allowed term in QCD)
 - or from the quarks and gluons themselves
Relative EDM Sensitivities

<table>
<thead>
<tr>
<th>System</th>
<th>Dependence (simple quark model)</th>
<th>Present Limit (e-cm)</th>
<th>Future (e-cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>[d_n \sim (3 \times 10^{-16}) \theta_{QCD} + 0.7(d_d - \frac{1}{4} d_u) + 0.6(\tilde{d}_d + \frac{1}{2} \tilde{d}_u)]</td>
<td>(<3 \times 10^{-26})</td>
<td>(10^{-28})</td>
</tr>
<tr>
<td>(^{199}\text{Hg})</td>
<td>[d_{\text{Hg}} \sim (0.001 \times 10^{-16}) \theta_{QCD} - 0.006(\tilde{d}_d - \tilde{d}_u)]</td>
<td>(<3 \times 10^{-29})</td>
<td>(10^{-30})</td>
</tr>
</tbody>
</table>
What is the precision for an EDM measurement?

\[\mathcal{E} = \hbar \omega = \vec{d} \cdot \vec{E} \]

Uncertainty in \(d \):

\[\sigma_d \sim \frac{\Delta \mathcal{E}}{|\vec{E}|} \]

\[\Delta \mathcal{E} \Delta t \sim \hbar \]

Precise energy measurement requires long individual measurement time, giving

\[\sigma_d^1 \sim \frac{\Delta \mathcal{E}}{|\vec{E}|} \sim \frac{\hbar}{|\vec{E}|T_m} \]

Can improve with counting statistics

\[\propto \frac{1}{\sqrt{N}} \]
Simplified Measurement of EDM

1. Inject polarized particle
2. Rotate spin by \(\pi/2 \)
3. Flip E-field direction
4. Measure frequency shift

\[\nu = \frac{2\mu \cdot \vec{B} \pm 2\vec{d} \cdot \vec{E}}{h} \]

must know \(B \) very well
Hadronic EDM experiments & plans

• Heavy Atoms increase sensitivity to EDM
 - Atomic electrons shield external E-field
 - Need to compensate for this via finite size

• ^{199}Hg – lowest measured EDM limit

• Deformed heavy-nuclei
 - Deformation can enhance further
 - several radioactive species appear best

• Improvements in Neutron technology
 - Vigorous world-wide effort underway
Electric Dipole Moment of 199Hg
University of Washington

2009: Last reported result
\[d(^{199}\text{Hg}) = (0.49 \pm 1.29 \pm 0.76) \times 10^{-29} \text{ e-cm}; \]
PRL 102, 101601 (2009)

\[| d(^{199}\text{Hg}) | \ < 3.1 \times 10^{-29} \text{ e-cm} \]

2014: EDM data-taking is underway.

We anticipate a reportable result by the end of 2014 with a statistical uncertainty of \(\sim 3.5 \times 10^{-30} \text{ e-cm}. \)

2017: They believe another factor of 3 increase in sensitivity is achievable

• With a larger electric field, longer spin coherence times, and better control of the uv beam paths, the current apparatus could reach a statistical sensitivity of \(\sim 1 \times 10^{-30} \text{ e-cm}. \)

Thanks to B. Heckel (UW)
EDM of 225Ra is Significantly Enhanced

- Closely spaced parity doublet - Haxton & Henley, PRL (1983)
- Large Schiff moment due to octupole deformation - Auerbach, Flambaum & Spevak, PRL (1996)
- Relativistic atomic structure (225Ra / 199Hg ~ 3) - Dzuba, Flambaum, Ginges, Kozlov, PRA (2002)

Parity doublet

$\Psi^- = (|\alpha\rangle - |\beta\rangle)/\sqrt{2}$

$\Psi^+ = (|\alpha\rangle + |\beta\rangle)/\sqrt{2}$

55 keV

Schiff moment

$$\text{Schiff \hspace{1mm} moment} = \sum_{i\neq 0} \frac{\langle \psi_0 | \hat{S}_z | \psi_i \rangle \langle \psi_i | \hat{H}_{PT} | \psi_0 \rangle}{E_0 - E_i} + c.c.$$

Enhancement Factor: EDM (225Ra) / EDM (199Hg)

<table>
<thead>
<tr>
<th>Skyrme Model</th>
<th>Isoscalar</th>
<th>Isovector</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIII</td>
<td>300</td>
<td>4000</td>
</tr>
<tr>
<td>SkM*</td>
<td>300</td>
<td>2000</td>
</tr>
<tr>
<td>SLy4</td>
<td>700</td>
<td>8000</td>
</tr>
</tbody>
</table>

Schiff moment of 225Ra, Dobaczewski, Engel, PRL (2005)
Schiff moment of 199Hg, Dobaczewski, Engel et al., PRC (2010)

- Near goal: 10^{-26} e cm
- 5-10 years: 10^{-28} e cm
- 10^{-30} e cm may be ultimate limit

Thanks to Z-T Lu (ANL)

\rightarrow Deformation enhanced 223Rn experiment also under development at TRIUMF
History of nEDM Sensitivity

Theoretical Prediction:

- Electromagnetic
- Milliweak
- Weinberg Multi-Higgs
- Supersymmetry
- Cosmology
- Superweak
- Standard Model

Neutron EDM Experimental Limit (e cm)

Best Existing Neutron Limit: ILL-Grenoble neutron EDM Experiment

- Trapped Ultra-Cold Neutrons (UCN)
- $N_{UCN} = 0.5$ UCN/cc
- $|E| = 5 - 10$ kV/cm
- 100 sec storage time

$\sigma_d < 3 \times 10^{-26}$ e-cm

Harris et al. Phys. Rev. Lett. 82, 904 (1999)
Technologies for new neutron EDM

• UCN (or beam for crystal exps)
 - SD_2, Superfluid 4He
• HV - the bigger the better
 - Vacuum, LHe, Crystal
• Magnetic Shielding
 - Room temperature and Cryogenic Shields
• Magnetometers
 - Atomic & others: 199Hg, 3He, 129Xe, 133Cs, SQUIDs, neutrons
 - Co-magnetometers most effective
Worldwide neutron EDM Searches

- SNS
- J-PARC
- PSI
- FRMII
- ILL
- TRIUMF
- LANL
- RCNP
- PNPI
<table>
<thead>
<tr>
<th>Experiment</th>
<th>UCN source</th>
<th>cell</th>
<th>Measurement techniques</th>
<th>σ_d Goal (10^{-28} e-cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILL-PNPI</td>
<td>ILL turbine PNPI/Solid D$_2$</td>
<td>Vac.</td>
<td>Ramsey technique for ω E=0 cell for magnetometer</td>
<td>Phase1 < 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILL Crystal</td>
<td>Cold n Beam</td>
<td>solid</td>
<td>Crystal Diffraction Non-Centrosymmetric crystal</td>
<td>< 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSI EDM</td>
<td>Solid D$_2$</td>
<td>Vac.</td>
<td>Ramsey for ω, external Cs & 3He, Hg co-magnetom. Xe or Hg comagnetometer</td>
<td>Phase1 ~ 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Munich FRMII</td>
<td>Solid D$_2$</td>
<td>Vac.</td>
<td>Room Temp., Hg Co-mag., also external Cs mag.</td>
<td>< 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCNP/TRIUMF</td>
<td>Superfluid 4He</td>
<td>Vac.</td>
<td>Small vol., Xe co-mag. @ RCNP Then move to TRIUMF</td>
<td>< 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SNS nEDM</td>
<td>Superfluid 4He</td>
<td>4He</td>
<td>Cryo-HV, 3He capture for ω, 3He co-mag. with SQUIDS & dressed spins, supercond.</td>
<td>< 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPARC</td>
<td>Solid D$_2$</td>
<td>Vac.</td>
<td>Under Development</td>
<td>< 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JPARC</td>
<td>Solid D$_2$</td>
<td>Solid</td>
<td>Crystal Diffraction Non-Centrosymmetric crystal</td>
<td>< 10?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LANL</td>
<td>Solid D$_2$</td>
<td>Vac.</td>
<td>R & D</td>
<td>~ 30</td>
</tr>
</tbody>
</table>

= sensitivity < 5 x 10^{-28} e-cm
Comparison of Capabilities for High Sensitivity experiments

<table>
<thead>
<tr>
<th>Capability</th>
<th>Cryo</th>
<th>FRM</th>
<th>PSI1</th>
<th>PSI2</th>
<th>SNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δω via accumulated phase in n polarization</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
</tr>
<tr>
<td>Δω via light oscillation in 3He capture</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>Horizontal B-field</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>*Comagnetometer</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*Superconducting B-shield</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>*Dressed Spin Technique</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
<tr>
<td>*Multiple EDM cells</td>
<td>N</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>*Temperature Dependence of Geometric phase effect</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

Last five items (marked with *) denote a systematics advantage

- SNS is arguably the most ambitious of the new experiments
- Will probe for systematic effects < 1×10^{-28} e-cm
US nEDM Experiment at Oak Ridge Lab-SNS

• Production of ultracold neutrons (UCN) within the apparatus
 - high UCN density and long storage times

• Liquid He as a high voltage insulator
 - high electric fields

• Use of a ^3He co-magnetometer and superconducting shield
 - Control of magnetic field systematics

• Use $\vec{n} - ^3\text{He}$ capture \rightarrow Scintillation light variation allows neutron precession frequency measurement via two techniques:
 • free precession
 • dressed spin techniques

• Sensitivity estimate: $d_n \sim 3-5 \times 10^{-28} \text{ e\cdotcm} \ (90\% \text{ CL after 3 yrs)}$
SNS-nEDM Experiment

Neutron beam is into page
1. Load collection volume with polarized 3He atoms
2. Transfer polarized 3He atoms into measurement cell
3. Illuminate measurement cell with polarized cold neutrons to produce polarized UCN
4. Apply a $\pi/2$ pulse to rotate spins perpendicular to B_0
5. Measure precession frequency
6. Remove reduced polarization 3He atoms from measurement cell
7. Flip E-field & Go to 1.

3He functions as “co-magnetometer”

Since $d_{^3\text{He}} \ll d_n$ due to e- screening
Two ways to measure nEDM via direct frequency measurement

e.g. via spin-dependent neutron capture on polarized 3He

Signal oscillates at n-3He beat frequency

N (counts/0.03 sec)
Can also take advantage of “Dressed” Spins

Add a non-resonant AC B-Field

Use of two measurement techniques provides critical cross-check of EDM result with different systematics

Can match effective precession frequency of n & 3He about B_0

Video from Pinghan Chu (Duke)
SNS nEDM Construction

• Four year “Critical Component Demonstration” construction underway
 - Construction of the most challenging components 2014-2017
 - Build from the inside to the outside
• Followed by two year Conventional Construction
 - Begin data taking by 2020
Future nEDM Sensitivity

Theoretical Prediction:
- Electromagnetic
- Milliweak
- Weinberg Multi-Higgs
- Supersymmetry
- Cosmology
- Superweak
- Standard Model

Future neutron EDM
Summary

- Greatly improved EDM sensitivity can probe Beyond-Standard-Model physics at very high mass scales

- A number of exciting technologies are being developed to extend the EDM sensitivity by more than two orders-of-magnitudes

- We look forward to the discovery of an EDM in the next decade
Extra Slides
nEDM @ SNS COLLABORATION

R. Alarcon, R. Dipert
Arizona State University
G. Seidel
Brown University
E. Hazen, A. Kolarkar, J. Miller, L. Roberts
Boston University
D. Budker, B.K. Park
UC Berkeley
R. Carr, B. Filippone, M. Mendenhall, C. Osthelder,
S. Slutsky,
C. Swank
California Institute of Technology
M. Ahmed, M. Busch, P. -H. Chu, H. Gao
Duke University
I. Silvera
Harvard University
M. Karcz, C.-Y. Liu, J. Long, H.O. Meyer, M. Snow
Indiana University
L. Bartoszek, D. Beck, C. Daurer, J.-C. Peng, T. Rao,
S. Williamson, L. Yang
University of Illinois Urbana-Champaign
C. Crawford, T. Gorringe, W. Korsch,
E. Martin, N. Nouri, B. Plaster
University of Kentucky
S. Clayton, M. Cooper, S. Currie, T. Ito, Y, Kim, M. Makela, J. Ramsey,
A. Roberts, W. Sondheim
Los Alamos National Lab
K. Dow, D. Hasell, E. Ihloff, J. Kelsey, J. Maxwell, R. Milner,
R. Redwine, E. Tsentalovich, C. Vidal
Massachusetts Institute of Technology
D. Dutta, E. Leggett
Mississippi State University
R. Golub, C. Gould, D. Haase, A. Hawari, P. Huffman, E. Korobkina,
K. Leung, A. Reid, A. Young
North Carolina State University
R. Allen, V. Cianciolo, Y. Efremenko, P. Mueller,
S. Penttila, W. Yao
Oak Ridge National Lab
M. Hayden
Simon Fraser University
G. Greene, N. Fomin
University of Tennessee
S. Stanislaus
Valparaiso University
S. Baeßler
University of Virginia
S. Lamoreaux
Yale University
Note: Some molecules have HUGE EDMs!

\[H_2O: \quad d = 0.4 \times 10^{-8} \text{ e-cm} \]
\[NaCl: \quad d = 1.8 \times 10^{-8} \text{ e-cm} \]
\[NH_3: \quad d = 0.3 \times 10^{-8} \text{ e-cm} \]

But \(NH_3 \) EDM is not \(T \)-odd or \(CP \)-odd since

\[\vec{d} \neq d \frac{\vec{J}}{J} \]

\(\left(\text{both} \quad \vec{d} = +d \frac{\vec{J}}{J} \quad \text{and} \quad \vec{d} = -d \frac{\vec{J}}{J} \quad \text{exist!} \right) \]

If Neutron had degenerate state it would not violate \(T \) or \(CP \)

Ground state is actually a superposition
How to Measure an EDM
Ramsey Separated Oscillatory Field Technique

1. “Spin up” neutron...

2. Apply $\pi/2$ spin flip pulse...

3. Free precession...

4. Second $\pi/2$ spin flip pulse.

If small angle (phase) is added after ~ 1000s of oscillations (e.g. from EDM) then final spin doesn’t point exactly down.