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J.P. Lansberg (IPNO) Gluon TMDs and Quarkonium Production October 20, 2014 1 / 21



Part I

Generalities on gluon TMDs
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Gluon distributions

Experimental and theoretical investigations of gluons inside hadrons
focused so far on their longitudinal momentum and helicity distributions:

g(x , µF ): unpolarised gluons with a collinear momentum fraction x
in unpolarised nucleons
∆g(x , µF ): circularly polarised gluons with a collinear momentum
fraction x in polarised nucleons

Gluon Transverse Momentum Dependent pdfs (TMDs) can be nonzero
Example: for nonzero kT , the gluons can be polarised

even if the nucleons are unpolarised (h⊥g
1 vs. ∆g)

Nontrivial property that received much more attention in the quark sector:
→ Boer-Mulders effect

Once h⊥g
1 is known, polarised processes in high-energy hadron-hadron

collisions (dominated by gg fusion) become accessible
even with unpolarised hadron beams !

Prime example: the LHC !
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Beyond collinear factorisation

Observed final-state qT from
“intrinsic” kT from initial partons

Novel kind of factorisation w.r.t. the collinear one
Additional degree of freedom of the partonic motion
TMD factorisation from gluon-gluon process : qT � Q

H is free of qT

dσ =
(2π)4

8s2

∫
d2k1T d2k2T δ2(k1T + k2T − qT )Hµρ (Hνσ)

∗×

Φµν
g (x1,k1T , ζ1, µ)Φρσ

g (x2,k2T , ζ2, µ)dR+O
( q2

T
Q2

)

Proven for SIDIS + pp reactions with colour singlet final states
Collins; Ji, Ma, Qiu; Rogers, Mulders, ...
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Gluon TMDs in unpolarised protons

Gauge-invariant definition:

Φµν
g (x ,k T , ζ, µ) ≡

∫ d(ξ·P)d2ξT

(xP·n)2(2π)3 ei(xP+kT )·ξ〈P|F nν
a (0)

(
Un[–]
[0,ξ]

)
ab

F nµ
b (ξ)|P〉

∣∣∣
ξ·P ′=0

the gauge link Un[–]
[0,ξ] renders the matrix element gauge invariant and

runs from 0 to ξ via −∞ along the n direction.

Parametrisation: P. J. Mulders, J. Rodrigues, PRD 63 (2001) 094021

Φµν
g (x ,k T , ζ, µ) = − 1

2x

{
gµν

T f g
1 (x , kT , µ)−

(
kµ

T kν
T

M2
p

+ gµν
T

k2
T

2M2
p

)
h⊥ g

1 (x , kT , µ)

}
+ suppr.

f g
1 : TMD distribution of unpolarised gluons

h⊥ g
1 : TMD distribution of linearly polarised gluons

[Helicity-flip distribution]
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gg fusion in arbitrary process (colourless final state)

8

Glue-Interactions in an arbitrary process (colorless final state)

dσgg(qT ≪ Q) ∝
(

∑

λa,λb

Hλaλb
H∗

λaλb

)

C[fg

1
f
g

1
]

F1 helicity non-flip, azimuthally indep., survives qT - integration

+
(

∑

λ

Hλ,λ H
∗

−λ,−λ

)

C[w2 h
g⊥

1
h
⊥g

1
]

F2 double helicity flip, azimuthally independent

+
(

∑

λa,λb

Hλa,λb
H∗

−λa,λb

)

C[w3 f
g

1
h
⊥g

1
] + {a ↔ b}

F3 single helicity flip, cos(2f) [sin(2f)]- modulation

+
(

∑

λ

Hλ,−λ H
∗

−λ,λ

)

C[w4 h
⊥g

1
h
⊥g

1
]

F4 double helicity flip, cos(4f)[sin(4f)]- modulation

illustrative: helicity space (helicity amplitudes)
➙ fully diff. cross section: 4 structures

S
lid

e
bo

rr
ow

ed
fro

m
M

.S
ch

le
ge

l
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Visualisation of h⊥g
1

W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)

Gaussian form for h⊥g
1 [left: h⊥g

1 > 0; right: h⊥g
1 < 0]

1

p
y

T
p
y

T

p
x

T
p
x

T

The ellipsoid axis lengths are proportional to the probability of
finding a gluon with a linear polarization in that direction
A single constraint: a positivity bound |h⊥g

1 | ≤ 2M2
p /~p2

T f g
1

This bound is saturated by a number of models
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Part II

Ideas to extract gluon TMDs at colliders
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Di-photon

J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)

Beside being the QCD background for H0 studies in the γγ
channel, pp → γγX is an interesting process to study gluon TMDs

Only colour-singlet particles in the final state
(also true for ZZ and γZ )

But contaminations from the qq̄ channel (particularly at RHIC)

⇒

quark TMDs gluon TMDs at O(αs
2) 

Only F4 (i.e. the cos(4φ) modulation) is purely gluonic
Huge background from π0 → isolation cuts are needed
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χc0,2 factorisation issue ? ↔ CO-CS mixing
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Part III

Quarkonium + photon
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Q+ isolated γ: interesting but ...

At high energy, 2 gluons in the initial states: no quark

The photon needs to be emitted by the heavy-quark loop
Consequence: gluon fragmentation associated with C = +1 octet [1S[8]

0 & 3P [8]
J ]

instead of C = −1 octet [3S[8]
1 ] for the inclusive case

CS rate at NLO ' conservative (high) expectation from CO
R.Li and J.X. Wang, PLB 672,51,2009

CO rates may be clearly lower if 1S[8]
0 and 3P [8]

J are indeed suppressed
(at NLO)At NNLO?, CS rate clearly above (high) expectation from CO

JPL, PLB 679,340,2009.

All this is certainly interesting but TMD factorisation is most likely not
applicable because of colour in the final state (either COM or gluons)
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Q+ γ: back-to-back and both isolated

�� ��
Born (LO) + loop: 2→ 2 contributions (a)-(b) fall like P−8

T
At NLO: topologies like (c) contribute at mid PT : P−6

T
At NNLO: topologies like (d) dominate at very large PT : P−4

T
COM contributions similar to (d):

Instead of a ’hard’ gluon, there would be multiple soft gluons.
(c)-(f): parton [→ some hadrons] in the central region;

for (d), hadrons near the Q
2→ 2 topologies contribute to ∆φQ−γ = π (back-to-back) ;

smearing effect small for PT � 〈kT 〉
(c)-(f) populate ∆φQ−γ < π [even ∆φ→ 0 for (c) and (d) at large PT ]
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Q+ γ: back-to-back and both isolated

Q

γ

The studies is of an isolated quarkonium
back-to-back with an (isolated) photon
selects the Born contributions to Q+ γ

The “back-to-back” requirement also limits the DPS contributions
[a priori evenly distributed in ∆φ]

Unique candidate to pin down the gluon TMDs
gluon sensitive process

colourless final state (virtue of isolation): TMD factorisation
applicable
small sensitivity to QCD corrections (most of them in the TMD
evolution)
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Expected rates for back-to-back Q+ γ
W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)
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back-to-back Q+ γ and the gluon TMDs
W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)

The qT -differential cross section involves f g
1 (x ,k T , µF ) and h⊥g

1 (x ,k T , µF )

dσ

dQdY d2qT dΩ
=

C0(Q2 −M2
Q)

s Q3D

{
F1 C

[
f g
1 f g

1

]
+ F3cos(2φCS)C

[
w3f g

1 h⊥g
1 + x1↔x2

]
+ F4cos(4φCS) C

[
w4h⊥g

1 h⊥g
1

]}
+O

(
q2

T

Q2

)

We define: S (n)qT
=
(

dσ
dQdY d cos θCS

)−1∫
dφCSπ cos(nφCS)

dσ
dQdY d2qT dΩ

S (0)qT
=

C[f g
1 f g

1 ]∫
dq2

T C[f
g
1 f g

1 ]
: does not involve h⊥g

1 [not always the case]

S (4)qT
=

F4 C[w4h⊥g
1 h⊥g

1 ]

2F1
∫

dq2
T C[f

g
1 f g

1 ]
:

S (4)qT
6= 0⇒ nonzero gluon polarisation in unpolarised protons !

S (4)qT
=

F4 C[w4h⊥g
1 h⊥g

1 ]

2F1
∫

dq2
T C[f

g
1 f g

1 ]
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Results with UGDs as Ansätze for TMDs

W. den Dunnen, JPL, C. Pisano, M. Schlegel, PRL 112, 212001 (2014)
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1 (x , kT ) from the qT -dependence of the yield.

S (4)qT
:
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should be measurable [O(1− 2%): ok with 2000 events]

S (2)qT
: slightly larger than S (4)qT
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Part IV

Quarkonium + Z boson
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Υ + Z cross sections
B. Gong, J.P. Lansberg, C. Lorcé, J.X. Wang, JHEP 1303 (2013) 115

Rates similar for Υ + Z and J/ψ + Z [Same for Q+ γ for Q & 20 GeV]
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Potential probe of gluon TMDs as well

Rate clearly smaller than Q+ γ even at low PT
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Υ + Z and TMDs
W. den Dunnen, JPL, C. Pisano, M. Schlegel, on-going work

Υ + Z @
√

s = 14 TeV;
Q = 120 GeV, Y = 0, θ = π/2
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S (n)qT
smaller than for Q+ γ [one can integrate up to larger qT , though]

Naturally large Q: interest to study the scale evolution ?
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Conclusions and Outlooks

TMD studies in the gluon sector are very promising

With lepton beams, only possible at an EIC
If we don’t want to wait for 10 years, LHC can help, right now !
Low PT ηc production [below Mηc /2] is highly challenging,

probably impossible with the current detectors
Di-photon production is perhaps more tractable

but very challenging where the rates are high
Back-to-back J/ψ + γ and Υ + γ is certainly at reach

Already a couple of thousand events on tapes
f g
1 (x , kT , µ) and h⊥g

1 (x , kT , µ) can be determined separately
Q can even be tuned→ gluon TMD evolution

Low PT onium and SSA of onium+photon studies could be done
with A Fixed-Target Experiment at the LHC: AFTER@LHC

[see talk by L. Massacrier on Friday, S11, 9h35]
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Part V

Backup
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S(0)
qT : Model predictions for Υ+ γ production at

√
s = 14 TeV

• Q = 20 GeV, Y = 0, θCS = π/2

• Models for fg
1

: assumed to be the same as for Unintegrated Gluon Distributions

• Set B: B0 solution to CCFM equation with input based on HERA data
Jung et al., EPJC 70 (2010) 1237

• KMR: Formalism embodies both DGLAP and BFKL evolution equations
Kimber, Martin, Ryskin, PRD 63 (2010) 114027

• CGC: Color Glass Condensate Model
Dominguez, Qiu, Xiao, Yuan, PRD 85 (2012) 045003

Metz, Zhou, PRD 84 (2011) 051503
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S(2,4)
qT : Model predictions for Υ+ γ production at

√
s = 14 TeV

• Q = 20 GeV, Y = 0, θCS = π/2

• h⊥g
1 : predictions only in the CGC: in the other models saturated to its upper bound

• S
(2,4)
qT smaller than S

(0)
qT : can be integrated up to qT = 10 GeV

2.0% (KMR) < |
∫

dq2
T
S
(2)
qT | < 2.9% (Gauss)

0.3% (CGC) <
∫
dq2

T
S
(4)
qT < 1.2% (Gauss)

Possible determination of the shape of fg
1 and verification of a non-zero h⊥g

1
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Discussion: CSM via γ? vs. COM via g?

qq̄′ → γ?W
3S[1]

1→ J/ψW and qq̄′ → g?W
3S[8]

1→ J/ψW are very similar
why ?

Let us simplify and look at qq̄′ → γ?
3S[1]

1→ J/ψ vs. qq̄′ → g?
3S[8]

1→ J/ψ

The cross sections are well-known:

CSM: σ̂
[1]
via γ? =

(4πα)2e2
qe2

Q
M3
Qs

δ
(
x1x2 −M2

Q/s
)
|R(0)|2

COM: σ̂
[8]
via g? =

(4παS)
2π

27M3
Qs

δ
(
x1x2 −M2

Q/s
)
〈OQ( 3S[8]

1 )〉

The ratio gives:
σ̂
[1]
via γ?

σ̂
[8]
via g?

=
6α2e2

qe2
Q〈OQ( 3S[1]

1 )〉
α2

S〈OQ( 3S[8]
1 )〉

〈OQ(3S[1]
1 )〉 = 2Nc (2J + 1) |R(0)|2

4π

Colour factor: 2Nc
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via g?

=
6α2e2

qe2
Q〈OQ( 3S[1]

1 )〉
α2

S〈OQ( 3S[8]
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The ratio depends on the initial quark, q, on αs at µR ' mQ and on the
ratio of the non-perturbative coefficients.
For J/ψ production in uū fusion and for
〈OJ/ψ(

3S[8]
1 )〉 = 2.2× 10−3 GeV3, the ratio CSM vs. COM is 2/3

For Υ production, it is about the same
(eQ smaller but αs also smaller and |R(0)|2 larger)

If we add the W emission, the charge factor changes and
µR : O(mQ)→ O(mW )

→ This explains our results for J/ψ + W
General conclusion:

For production processes involving light quarks, the CSM via off-
shell photon competes with the COM via off-shell gluon
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