Gluon TMDs and Quarkonium Production in Unpolarised and Polarised Proton-Proton Collisions

J.P. Lansberg
IPN Orsay – Paris-Sud U. –CNRS/IN2P3

October 20-24, 2014 – Beijing, China

Collaboration with W. den Dunnen, C. Lorcé, C. Pisano, M. Schlegel, H.S. Shao
Part I

Generalities on gluon TMDs
Gluon distributions

Experimental and theoretical investigations of gluons inside hadrons focused so far on their longitudinal momentum and helicity distributions:

\[g(x, \mu_F) \]: unpolarised gluons with a collinear momentum fraction \(x \) in unpolarised nucleons

\[\Delta g(x, \mu_F) \]: circularly polarised gluons with a collinear momentum fraction \(x \) in polarised nucleons

Gluon Transverse Momentum Dependent pdfs (TMDs) can be nonzero. Example: for nonzero \(k_T \), the gluons can be polarised even if the nucleons are unpolarised (\(h_\perp g_1 \) vs. \(\Delta g \)).

Nontrivial property that received much more attention in the quark sector:

\[\rightarrow \] Boer-Mulders effect

Once \(h_\perp g_1 \) is known, polarised processes in high-energy hadron-hadron collisions (dominated by \(gg \) fusion) become accessible even with unpolarised hadron beams!

Prime example: the LHC!
Gluon distributions

- Experimental and theoretical investigations of gluons inside hadrons focused so far on their **longitudinal momentum and helicity distributions**:

 \[g(x, \mu_F) \]: unpolarised gluons with a collinear momentum fraction \(x \) in unpolarised nucleons

 \[\Delta g(x, \mu_F) \]: circularly polarised gluons with a collinear momentum fraction \(x \) in polarised nucleons

Gluon Transverse Momentum Dependent pdfs (TMDs) can be nonzero. Example: for nonzero \(k_T \), the gluons can be polarised even if the nucleons are unpolarised (\(h_\perp g_1 \) vs. \(\Delta g \)).

Nontrivial property that received much more attention in the quark sector: \(\rightarrow \) Boer-Mulders effect

Once \(h_\perp g_1 \) is known, polarised processes in high-energy hadron-hadron collisions (dominated by \(gg \) fusion) become accessible even with unpolarised hadron beams!

Prime example: the LHC!
Gluon distributions

- Experimental and theoretical investigations of gluons inside hadrons focused so far on their **longitudinal momentum and helicity distributions**:
 - $g(x, \mu_F)$: **unpolarised** gluons with a collinear momentum fraction x in **unpolarised** nucleons
 - $\Delta g(x, \mu_F)$: **circularly polarised** gluons with a collinear momentum fraction x in **polarised** nucleons

Gluon Transverse Momentum Dependent pdfs (TMDs) can be nonzero
- Example: for nonzero k_T, the gluons can be polarised even if the nucleons are unpolarised ($h_\perp g_1$ vs. Δg)
- Nontrivial property that received much more attention in the quark sector:
 - \rightarrow Boer-Mulders effect
 - Once $h_\perp g_1$ is known, polarised processes in high-energy hadron-hadron collisions (dominated by gg fusion) become accessible even with unpolarised hadron beams!
 - Prime example: the LHC
Gluon distributions

- Experimental and theoretical investigations of gluons inside hadrons focused so far on their longitudinal momentum and helicity distributions:
 - $g(x, \mu_F)$: unpolarised gluons with a collinear momentum fraction x in unpolarised nucleons
 - $\Delta g(x, \mu_F)$: circularly polarised gluons with a collinear momentum fraction x in polarised nucleons

- Gluon Transverse Momentum Dependent pdfs (TMDs) can be nonzero

Example: for nonzero k_T, the gluons can be polarised even if the nucleons are unpolarised ($h_\perp g_1$ vs. Δg)

Nontrivial property that received much more attention in the quark sector:

\rightarrow Boer-Mulders effect

Once $h_\perp g_1$ is known, polarised processes in high-energy hadron-hadron collisions (dominated by gg fusion) become accessible even with unpolarised hadron beams!

Prime example: the LHC!
Gluon distributions

- Experimental and theoretical investigations of gluons inside hadrons focused so far on their longitudinal momentum and helicity distributions:
 - $g(x, \mu_F)$: unpolarised gluons with a collinear momentum fraction x in unpolarised nucleons
 - $\Delta g(x, \mu_F)$: circularly polarised gluons with a collinear momentum fraction x in polarised nucleons

- Gluon Transverse Momentum Dependent pdfs (TMDs) can be nonzero

- Example: for nonzero k_T, the gluons can be polarised even if the nucleons are unpolarised ($h_{1T}g$ vs. Δg)
Gluon distributions

- Experimental and theoretical investigations of gluons inside hadrons focused so far on their **longitudinal momentum and helicity distributions**:
 - $g(x, \mu_F)$: unpolarised gluons with a collinear momentum fraction x in unpolarised nucleons
 - $\Delta g(x, \mu_F)$: circularly polarised gluons with a collinear momentum fraction x in polarised nucleons

- Gluon Transverse Momentum Dependent pdfs (TMDs) can be nonzero

- Example: for nonzero k_T, the gluons can be polarised even if the nucleons are unpolarised ($h_1^\perp g$ vs. Δg)

- Nontrivial property that received much more attention in the quark sector: \rightarrow Boer-Mulders effect
Gluon distributions

- Experimental and theoretical investigations of gluons inside hadrons focused so far on their longitudinal momentum and helicity distributions:
 - \(g(x, \mu_F) \): unpolarised gluons with a collinear momentum fraction \(x \) in unpolarised nucleons
 - \(\Delta g(x, \mu_F) \): circularly polarised gluons with a collinear momentum fraction \(x \) in polarised nucleons

- Gluon Transverse Momentum Dependent pdfs (TMDs) can be nonzero
- Example: for nonzero \(k_T \), the gluons can be polarised even if the nucleons are unpolarised (\(h_1^{\perp}g \) vs. \(\Delta g \))
- Nontrivial property that received much more attention in the quark sector: \(\rightarrow \) Boer-Mulders effect
- Once \(h_1^{\perp}g \) is known, polarised processes in high-energy hadron-hadron collisions (dominated by \(gg \) fusion) become accessible even with unpolarised hadron beams!
Gluon distributions

- Experimental and theoretical investigations of gluons inside hadrons focused so far on their longitudinal momentum and helicity distributions:
 - $g(x, \mu_F)$: unpolarised gluons with a collinear momentum fraction x in unpolarised nucleons
 - $\Delta g(x, \mu_F)$: circularly polarised gluons with a collinear momentum fraction x in polarised nucleons

- Gluon Transverse Momentum Dependent pdfs (TMDs) can be nonzero
- Example: for nonzero k_T, the gluons can be polarised even if the nucleons are unpolarised ($h_1^{\perp g}$ vs. Δg)

- Nontrivial property that received much more attention in the quark sector: \rightarrow Boer-Mulders effect

- Once $h_1^{\perp g}$ is known, polarised processes in high-energy hadron-hadron collisions (dominated by gg fusion) become accessible even with unpolarised hadron beams!

- Prime example: the LHC!
Beyond collinear factorisation

- Observed final-state q_T from "intrinsic" k_T from initial partons
- Novel kind of factorisation w.r.t. the collinear one
- Additional degree of freedom of the partonic motion

TMD factorisation from gluon-gluon process:

$$q_T \ll Q_H$$ is free of q_T

$$d\sigma = \left(\frac{2\pi}{\sqrt{s}}\right)^4 \int d^2k_1^T d^2k_2^T \delta^2(k_1^T + k_2^T - q_T) H_{\mu\rho}(H_{\nu\sigma})^* \times \Phi_{\mu\nu} g(x_1, k_1^T, \zeta_1, \mu) \Phi_{\rho\sigma} g(x_2, k_2^T, \zeta_2, \mu) dR + O(q_T^2 Q_H^2)$$

Proven for SIDIS + pp reactions with colour singlet final states

Collins; Ji, Ma, Qiu; Rogers, Mulders, ...

J.P. Lansberg (IPNO)
Gluon TMDs and Quarkonium Production
October 20, 2014
Beyond collinear factorisation

- Observed final-state q_T from “intrinsic” k_T from initial partons

\[
d\sigma = \frac{(2\pi)^4}{8s^2} \int d^2k_1 T d^2k_2 T \delta^2(k_1 T + k_2 T - q_T) H_{\mu\rho}(H_{\nu\sigma})^* \times \Phi_{\mu\nu} g(x_1, k_1 T, \zeta_1, \mu) \Phi_{\rho\sigma} g(x_2, k_2 T, \zeta_2, \mu) dR + O(q^2 T Q^2)
\]
Beyond collinear factorisation

- Observed final-state q_T from
 "intrinsic" k_T from initial partons
- Novel kind of factorisation w.r.t. the collinear one

Proven for SIDIS + pp reactions with colour singlet final states

Collins; Ji, Ma, Qiu; Rogers, Mulders, ...
Beyond collinear factorisation

- Observed final-state q_T from "intrinsic" k_T from initial partons
- Novel kind of factorisation w.r.t. the collinear one
- Additional degree of freedom of the partonic motion
Beyond collinear factorisation

- Observed final-state q_T from
 - "intrinsic" k_T from initial partons
- Novel kind of factorisation w.r.t. the collinear one
- Additional degree of freedom of the partonic motion
- TMD factorisation from gluon-gluon process: $q_T \ll Q$

\[d\sigma = \frac{(2\pi)^4}{8s^2} \int d^2k_1T d^2k_2T \delta^2(k_1T + k_2T - q_T) H_{\mu\rho} (H_{\nu\sigma})^* \times \]

\[\Phi_g^{\mu\nu}(x_1, k_1T, \zeta_1, \mu) \Phi_g^{\rho\sigma}(x_2, k_2T, \zeta_2, \mu) d\mathcal{R} + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right) \]
Beyond collinear factorisation

- Observed final-state q_T from “intrinsic” k_T from initial partons
- Novel kind of factorisation w.r.t. the collinear one
- Additional degree of freedom of the partonic motion
- TMD factorisation from gluon-gluon process: $q_T \ll Q$

$$d\sigma = \frac{(2\pi)^4}{8s^2} \int d^2k_1T d^2k_2T \delta^2(k_1T + k_2T - q_T) H_{\mu\rho}(H_{\nu\sigma})^* \times \Phi_{g}^{\mu\nu}(x_1, k_1T, \zeta_1, \mu) \Phi_{g}^{\rho\sigma}(x_2, k_2T, \zeta_2, \mu)d\mathcal{R} + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right)$$

- Proven for SIDIS + pp reactions with colour singlet final states
Gluon TMDs in unpolarised protons

Gauge-invariant definition:

\[\Phi_{\mu\nu}^g(x, k_T, \zeta, \mu) \equiv \int d(\xi \cdot P) \frac{d^2 \xi}{(2\pi)^3} T(xP \cdot n) \frac{1}{2(xP + k_T) \cdot \xi} \langle \mathbf{P} | F_{n\nu}^{\mu} (0) | \mathbf{U}_{n\{0, \xi\}} \rangle | \xi \cdot P = 0 \]

The gauge link \(\mathbf{U}_{n\{0, \xi\}} \) renders the matrix element gauge invariant and runs from 0 to \(\xi \) via \(-\infty \) along the \(n \) direction.

Parametrization:

\[\Phi_{\mu\nu}^g(x, k_T, \zeta, \mu) = -\frac{1}{2} x \{ g_{\mu\nu} T f_{g1}(x, k_T, \mu) - (k_\mu T k_\nu T - g_{\mu\nu} T k_T^2) h_{\perp g1}(x, k_T, \mu) \} + \text{suppr.} \]

\(f_{g1} \): TMD distribution of unpolarised gluons

\(h_{\perp g1} \): TMD distribution of linearly polarised gluons

[Helicity-flip distribution]
Gluon TMDs in unpolarised protons

Gauge-invariant definition:

\[\Phi_{g}^{\mu\nu}(x, k_T, \zeta, \mu) \equiv \int \frac{d(\xi \cdot P) d^2 \xi_T}{(xP \cdot n)^2 (2\pi)^3} e^{i(xP+k_T) \cdot \xi} \langle P| F_{a}^{\nu} (0) (U_{[0,\xi]}^{n[-]})_{ab} F_{b}^{\mu} (\xi) |P\rangle \bigg|_{\xi \cdot P' = 0} \]

- the gauge link \(U_{[0,\xi]}^{n[-]} \) renders the matrix element gauge invariant and runs from 0 to \(\zeta \) via \(-\infty\) along the \(n \) direction.
Gluon TMDs in unpolarised protons

- **Gauge-invariant definition:**

\[
\Phi_{g}^{\mu\nu}(x, k_T, \zeta, \mu) \equiv \int \frac{d(\xi \cdot P) d^2\xi_T}{(xP \cdot n)^2 (2\pi)^3} e^{i(xP + k_T) \cdot \xi} \langle P | F_{an}^{\mu\nu}(0) \left(\mathcal{U}_{[0, \zeta]} \right)_{ab} F_{bn}^{\mu\nu}(\xi) | P \rangle \bigg|_{\xi \cdot P' = 0}
\]

- The gauge link \(\mathcal{U}_{[0, \zeta]}^{n[-]} \) renders the matrix element gauge invariant and runs from 0 to \(\zeta \) via \(-\infty\) along the \(n \) direction.

- **Parametrisation:**

\[
\Phi_{g}^{\mu\nu}(x, k_T, \zeta, \mu) = -\frac{1}{2x} \left\{ g_T^{\mu\nu} h_{1}^{\perp g}(x, k_T, \mu) - \left(\frac{k_T^{\mu} k_T^{\nu}}{M_P^2} + g_T^{\mu\nu} \frac{k_T^{2}}{2M_P^2} \right) h_{1}^{\perp g}(x, k_T, \mu) \right\} + \text{suppr.}
\]

J.P. Lansberg (IPNO) Gluon TMDs and Quarkonium Production October 20, 2014 5 / 21
Gluon TMDs in unpolarised protons

Gauge-invariant definition:

\[\Phi_{g}^{\mu\nu}(x, k_T, \zeta, \mu) \equiv \int \frac{d(\xi \cdot P) \, d^2 \xi_T}{(xP \cdot n)^2 (2\pi)^3} e^{i(xP + k_T) \cdot \xi} \langle P | F_{a}^{\mu\nu}(0) \left(\mathcal{U}_{[0,\xi]}^{n[-]} \right)_{ab} F_{b}^{\mu\nu}(\zeta) | P \rangle \bigg|_{\xi \cdot P' = 0} \]

the gauge link \(\mathcal{U}_{[0,\xi]}^{n[-]} \) renders the matrix element gauge invariant and runs from 0 to \(\zeta \) via \(-\infty \) along the \(n \) direction.

Parametrisation:

\[\Phi_{g}^{\mu\nu}(x, k_T, \zeta, \mu) = -\frac{1}{2x} \left\{ g_T^{\mu\nu} f_1^{g}(x, k_T, \mu) - \left(\frac{k_T^\mu k_T^\nu}{M_p^2} + g_T^{\mu\nu} \frac{k_T^2}{2M_p^2} \right) h_{1}^{\perp} g(x, k_T, \mu) \right\} \]

\(f_1^{g} \): TMD distribution of unpolarised gluons

\(h_{1}^{\perp} g \): TMD distribution of linearly polarised gluons

[Helicity-flip distribution]

Glue-Interactions in an arbitrary process (colorless final state)

dσgg(qT ≪ Q) ∝

(∑
λa,λb
Hλaλb H∗λaλb) C[f1g f1g]

→ F1 → helicity non-flip, azimuthally independent, survives qT-integration

+ (∑
λ
Hλ,λ H∗−λ,−λ) C[w2 h1⊥ h1⊥]

→ F2 → double helicity flip, azimuthally independent

+ (∑
λa,λb
Hλa,λb H∗−λa,λb) C[w3 f1g h1⊥g] + {a ↔ b}

→ F3 → single helicity flip, cos(2φ) [sin(2φ)]-modulation

+ (∑
λ
Hλ,−λ H∗−λ,λ) C[w4 h1⊥g h1⊥g]

→ F4 → double helicity flip, cos(4φ) [sin(4φ)]-modulation

illustrative: helicity space (helicity amplitudes) → fully diff. cross section: 4 structures
Visualisation of $h_1 \perp g$

The ellipsoid axis lengths are proportional to the probability of finding a gluon with a linear polarization in that direction.

A single constraint: a positivity bound

$|h_1 \perp g| \leq \frac{2 M^2}{\vec{p} T f g_1}$

This bound is saturated by a number of models.
Visualisation of $h_1 \perp g$

- Gaussian form for $h_1 \perp g$ [left: $h_1 \perp g > 0$; right: $h_1 \perp g < 0$]
Visualisation of $h_1^\perp g$

- Gaussian form for $h_1^\perp g$ [left: $h_1^\perp g > 0$; right: $h_1^\perp g < 0$]

- The ellipsoid axis lengths are proportional to the probability of finding a gluon with a linear polarization in that direction

Visualisation of $h_1 \perp g$

- Gaussian form for $h_1 \perp g$ [left: $h_1 \perp g > 0$; right: $h_1 \perp g < 0$]

- The ellipsoid axis lengths are proportional to the probability of finding a gluon with a linear polarization in that direction.

- A single constraint: a positivity bound $|h_1 \perp g| \leq 2M_p^2 / \vec{p}_T^2 f_1^g$
Visualisation of $h_1^\perp g$

- Gaussian form for $h_1^\perp g$ [left: $h_1^\perp g > 0$; right: $h_1^\perp g < 0$]

- The ellipsoid axis lengths are proportional to the probability of finding a gluon with a linear polarization in that direction

- A single constraint: a positivity bound $|h_1^\perp g| \leq 2m_p^2 / \vec{p}_T^2 f_g$

- This bound is saturated by a number of models
Part II

Ideas to extract gluon TMDs at colliders
Beside being the QCD background for H_0 studies in the $\gamma\gamma$ channel, $pp \rightarrow \gamma\gamma X$ is an interesting process to study gluon TMDs. Only colour-singlet particles in the final state (also true for ZZ and γZ). But contaminations from the $q\bar{q}$ channel (particularly at RHIC).

Quark TMDs gluon TMDs at $O(\alpha_s^2)$. Only F_4 (i.e., the cos(4ϕ) modulation) is purely gluonic. Huge background from $\pi^0 \rightarrow \gamma\gamma$ isolation cuts are needed.

J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)
Beside being the QCD background for H^0 studies in the $\gamma\gamma$ channel, $pp \rightarrow \gamma\gamma X$ is an interesting process to study gluon TMDs.
Besides being the QCD background for H^0 studies in the $\gamma\gamma$ channel, $pp \rightarrow \gamma\gamma X$ is an interesting process to study gluon TMDs.

Only colour-singlet particles in the final state

(also true for ZZ and γZ)
Beside being the QCD background for H^0 studies in the $\gamma\gamma$ channel, $pp \rightarrow \gamma\gamma X$ is an interesting process to study gluon TMDs.

Only colour-singlet particles in the final state (also true for ZZ and γZ).

But contaminations from the $q\bar{q}$ channel (particularly at RHIC).
Beside being the QCD background for H^0 studies in the $\gamma\gamma$ channel, $pp \rightarrow \gamma\gamma X$ is an interesting process to study gluon TMDs. Only colour-singlet particles in the final state (also true for ZZ and γZ). But contaminations from the $q\bar{q}$ channel (particularly at RHIC).
Beside being the QCD background for H^0 studies in the $\gamma\gamma$ channel, $pp \rightarrow \gamma\gamma X$ is an interesting process to study gluon TMDs. Only colour-singlet particles in the final state (also true for ZZ and γZ). But contaminations from the $q\bar{q}$ channel (particularly at RHIC).

Only F_4 (i.e. the $\cos(4\phi)$ modulation) is purely gluonic.

J.W Qiu, M. Schlegel, W. Vogelsang, PRL 107, 062001 (2011)
Beside being the QCD background for H^0 studies in the $\gamma\gamma$ channel, $pp \rightarrow \gamma\gamma X$ is an interesting process to study gluon TMDs.

Only colour-singlet particles in the final state (also true for ZZ and γZ)

But contaminations from the $q\bar{q}$ channel (particularly at RHIC)

Only F_4 (i.e. the $\cos(4\phi)$ modulation) is purely gluonic

Huge background from $\pi^0 \rightarrow$ isolation cuts are needed
Low P_T quarkonia and TMDs
Low P_T quarkonia and TMDs

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer

Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano

Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy

PHYSICAL REVIEW D 86, 094007 (2012)

η_c production at one-loop

χ_c production at one-loop

J.P. Ma, J.X. Wang, S. Zhao, PLB737 (2014) 103-108

Cannot tune Q: $Q \simeq m_Q$

Experimentally very difficult

First η_c production study at collider ever, only released last month for $P_{\eta_c} > 6$ GeV

LHCb, 1409.3612
Low P_T quarkonia and TMDs

Low P_T C-even quarkonium production is a good probe of $h_{1}^{\perp g}$
Low P_T quarkonia and TMDs

Low P_T C-even quarkonium production is a good probe of $h_{1}^{\perp g}$
Low P_T quarkonia and TMDs

- **Low P_T C-even quarkonium production is a good probe of h^\perp_1g**
- **Affect the low P_T spectra:**
 \[
 \frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{dq_T^2} \propto 1 - R(q_T^2) \quad \text{and} \quad \frac{1}{\sigma} \frac{d\sigma(\chi_{Q,0})}{dq_T^2} \propto 1 + R(q_T^2)
 \]

 (R involves $f^g_1(x, k_T, \mu)$ and $h^\perp_1g(x, k_T, \mu)$)

\[
\sigma^{-1} \frac{d\sigma}{dq_T^2} \text{ (GeV}^{-2})
\]

\[
\langle p_T^2 \rangle = 1 \text{ GeV}^2
\]
Low P_T quarkonia and TMDs

- **Low P_T C-even quarkonium production** is a good probe of $h_1 \perp g$

- Affect the low P_T spectra:
 \[
 \frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{dq_T^2} \propto 1 - R(q_T^2) \quad \text{and} \quad \frac{1}{\sigma} \frac{d\sigma(\chi_{Q,0})}{dq_T^2} \propto 1 + R(q_T^2)
 \]

 (R involves $f_1^g(x, k_T, \mu)$ and $h_1 \perp g(x, k_T, \mu)$)

- **η_c production at one-loop** J.P. Ma, J.X. Wang, S. Zhao, PRD88 (2013) 1, 014027.
Low P_T quarkonia and TMDs

- Low P_T C-even quarkonium production is a good probe of $h_1^\perp g$
- Affect the low P_T spectra:
 \[
 \frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{dq_T^2} \propto 1 - R(q_T^2) \quad \text{and} \quad \frac{1}{\sigma} \frac{d\sigma(\chi_{Q,0})}{dq_T^2} \propto 1 + R(q_T^2)
 \]

 (R involves $f_1^g(x, k_T, \mu)$ and $h_1^\perp g(x, k_T, \mu)$)

- η_c production at one-loop J.P. Ma, J.X. Wang, S. Zhao, PRD88 (2013) 1, 014027.

- $\chi_{c0,2}$ factorisation issue? ↔ CO-CS mixing J.P. Ma, J.X. Wang, S. Zhao, PLB737 (2014) 103-108
Low P_T quarkonia and TMDs

- **Low P_T C-even quarkonium production is a good probe of $h_1^{\perp g}$**

- Affect the low P_T spectra:
 \[
 \frac{d\sigma(\eta_Q)}{dq_T^2} \propto 1 - R(q_T^2) \quad \text{and} \quad \frac{d\sigma(\chi_{Q,0})}{dq_T^2} \propto 1 + R(q_T^2)
 \]
 \[(R \text{ involves } f_1^g(x, k_T, \mu) \text{ and } h_1^{\perp g}(x, k_T, \mu))\]

- **η_c production at one-loop** J.P. Ma, J.X. Wang, S. Zhao, PRD88 (2013) 1, 014027.

- **$\chi_{c0,2}$ factorisation issue? ↔ CO-CS mixing**
 J.P. Ma, J.X. Wang, S. Zhao, PLB737 (2014) 103-108

- **Cannot tune Q: $Q \simeq m_Q$**
Low P_T quarkonia and TMDs

- Low P_T C-even quarkonium production is a good probe of $h_1\perp g$

- Affect the low P_T spectra:
 \[
 \frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{dq_T^2} \propto 1 - R(q_T^2) \quad \text{and} \quad \frac{1}{\sigma} \frac{d\sigma(\chi_{Q,0})}{dq_T^2} \propto 1 + R(q_T^2)
 \]
 \[(R \text{ involves } f_1^g(x, k_T, \mu) \text{ and } h_1\perp g(x, k_T, \mu))\]

- η_c production at one-loop \cite{Ma2013}

- $\chi_{c0,2}$ factorisation issue? \iff CO-CS mixing \cite{Ma2014}

- Cannot tune Q: $Q \simeq m_Q$

- Experimentally very difficult

First η_c production study at collider ever, only released last month for $P_T^{\eta_c} > 6$ GeV \cite{LHCb2014}

Equation:
\[
\sigma^{-1} \frac{d\sigma}{dq_T^2} \quad \begin{array}{c}
\chi_0 \\
(h_1^\perp g = 0) \\
\chi_2 \\
\eta_Q
\end{array}
\]

Graph:
- $\langle p_T^2 \rangle = 1$ GeV2
- q_T (GeV)
- $\sigma^{-1} d\sigma / dq_T^2$ (GeV$^{-2}$)
- $h_1^\perp g = 0$
- χ_0
- χ_2
- η_Q

References:
- J.P. Ma, J.X. Wang, S. Zhao, PLB737 (2014) 103-108
- J.P. Lansberg (IPNO) Gluon TMDs and Quarkonium Production
Part III

Quarkonium + photon
$Q + \text{isolated } \gamma$: interesting but ...

- At high energy, 2 gluons in the initial states: no quark
Q + isolated γ: interesting but ...

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
Q + isolated γ: interesting but ...

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
- Consequence: gluon fragmentation associated with $C = +1$ octet $[^1S_0^8]$ and $[^3P_J^8]$ instead of $C = −1$ octet $[^3S_1^8]$ for the inclusive case
$Q + \text{isolated } \gamma$: interesting but ...

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
- Consequence: gluon fragmentation associated with $C = +1$ octet [$^1 S^0_0$ & $^3 P^3_J$] instead of $C = -1$ octet [$^3 S^1_1$] for the inclusive case
- CS rate at NLO \sim conservative (high) expectation from CO

R.Li and J.X. Wang, PLB 672,51,2009
Q + isolated \(\gamma \): interesting but ...

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
- Consequence: gluon fragmentation associated with \(C = +1 \) octet \([1\,S_0^8\ & 3\,P_J^8]\)
 instead of \(C = -1 \) octet \([3\,S_i^8]\) for the inclusive case
- CS rate at NLO \(\sim \) conservative (high) expectation from CO
- CO rates may be clearly lower if \(1\,S_0^8 \) and \(3\,P_J^8 \) are indeed suppressed
 (at NLO)
\(Q \) + isolated \(\gamma \): interesting but ...

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
- Consequence: gluon fragmentation associated with \(C = +1 \) octet \([^1S_0^8] \text{ and } ^3P_J^8\) instead of \(C = -1 \) octet \([^3S_1^8]\) for the inclusive case
- CS rate at NLO \(\sim \) conservative (high) expectation from CO
- CO rates may be clearly lower if \([^1S_0^8]\) and \([^3P_J^8]\) are indeed suppressed
- At NNLO\(^*\), CS rate clearly above (high) expectation from CO (at NLO)
$Q +$ isolated γ: interesting but ...

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
- Consequence: gluon fragmentation associated with $C = +1$ octet [$^1S_0^8$ & $^3P_J^8$] instead of $C = -1$ octet [$^3S_1^8$] for the inclusive case
- CS rate at NLO \sim conservative (high) expectation from CO
- CO rates may be clearly lower if $^1S_0^8$ and $^3P_J^8$ are indeed suppressed
- At NNLO*, CS rate clearly above (high) expectation from CO

\[JPL, \text{ PLB 679,340,2009.} \]

\[R.Li \text{ and J.X. Wang, PLB 672,51,2009} \]
$Q + \text{isolated } \gamma$: interesting but ...

- At high energy, 2 gluons in the initial states: no quark
- The photon needs to be emitted by the heavy-quark loop
- Consequence: gluon fragmentation associated with $C = +1$ octet \([1^1S_0^8] \text{ and } 3P_J^8\) instead of $C = -1$ octet \([3S_i^8]\) for the inclusive case
- CS rate at NLO \(\sim\) conservative (high) expectation from CO
- CO rates may be clearly lower if \(1^1S_0^8\) and \(3P_J^8\) are indeed suppressed
- At NNLO*, CS rate clearly above (high) expectation from CO

![Graph showing the distribution of event rates.](image)

All this is certainly interesting but TMD factorisation is most likely not applicable because of colour in the final state (either COM or gluons)
Q + γ: back-to-back and both isolated

Representative diagrams contributing to the hadroproduction of a Q in association with a photon at orders $\alpha_s^2 \alpha$, $\alpha_s^3 \alpha$ (a, b, c), $\alpha_s^4 \alpha$ (d, e, f).
Q + γ: **back-to-back** and both isolated

- Born (LO) + loop: $2 \rightarrow 2$ contributions (a)-(b) fall like P_T^{-8}
$Q + \gamma$: back-to-back and both isolated

- Born (LO) + loop: $2 \rightarrow 2$ contributions (a)-(b) fall like P_T^{-8}
- At NLO: topologies like (c) contribute at mid P_T: P_T^{-6}
$Q + \gamma$: back-to-back and both isolated

- Born (LO) + loop: $2 \rightarrow 2$ contributions (a)-(b) fall like P_T^{-8}
- At NLO: topologies like (c) contribute at mid P_T: P_T^{-6}
- At NNLO: topologies like (d) dominate at very large P_T: P_T^{-4}

Representative diagrams contributing to the hadroproduction of a Q in association with a photon at orders $\alpha_s^2 \alpha$ (a), $\alpha_s^3 \alpha$ (b, c), $\alpha_s^4 \alpha$ (d, e, f).
\(Q + \gamma: \textbf{back-to-back and both isolated} \)

- Born (LO) + loop: \(2 \rightarrow 2 \) contributions (a)-(b) fall like \(P_T^{-8} \)
- At NLO: topologies like (c) contribute at mid \(P_T: P_T^{-6} \)
- At NNLO: topologies like (d) dominate at very large \(P_T: P_T^{-4} \)
- COM contributions similar to (d):
 - Instead of a 'hard' gluon, there would be multiple soft gluons.
$Q + \gamma$: back-to-back and both isolated

Representative diagrams contributing to the hadroproduction of a Q in association with a photon at orders $\alpha_s^2\alpha$ (a), $\alpha_s^3\alpha$ (b, c), $\alpha_s^4\alpha$ (d, e, f).

- **Born (LO) + loop:** $2 \rightarrow 2$ contributions (a)-(b) fall like P_T^{-8}
- **At NLO:** topologies like (c) contribute at mid $P_T : P_T^{-6}$
- **At NNLO:** topologies like (d) dominate at very large $P_T : P_T^{-4}$
- **COM contributions similar to (d):**
 - Instead of a 'hard' gluon, there would be multiple soft gluons.
- (c)-(f): parton \rightarrow some hadrons] in the central region;
 - for (d), hadrons near the Q
\(Q + \gamma\): **back-to-back** and both isolated

- **Representative diagrams contributing to the hadroproduction of a** \(Q\) **in association with a photon at orders** \(\alpha_s^2\alpha\) (a), \(\alpha_s^3\alpha\) (b, c), \(\alpha_s^4\alpha\) (d, e, f).

- **Born (LO) + loop:** \(2 \rightarrow 2\) contributions (a)-(b) fall like \(P_T^{-8}\)
- **At NLO:** topologies like (c) contribute at mid \(P_T\) : \(P_T^{-6}\)
- **At NNLO:** topologies like (d) dominate at very large \(P_T\) : \(P_T^{-4}\)
- **COM contributions similar to** (d):
 - Instead of a 'hard' gluon, there would be multiple soft gluons.
- (c)-(f): parton \(\rightarrow\) some hadrons] in the central region;
 - for (d), hadrons near the \(Q\)
- **2 \rightarrow 2 topologies contribute to** \(\Delta \phi_{Q-\gamma} = \pi\) (back-to-back);
 - smearing effect small for \(P_T \gg \langle k_T \rangle\)
$Q + \gamma$: back-to-back and both isolated

- Born (LO) + loop: $2 \rightarrow 2$ contributions (a)-(b) fall like P_T^{-8}
- At NLO: topologies like (c) contribute at mid $P_T : P_T^{-6}$
- At NNLO: topologies like (d) dominate at very large $P_T : P_T^{-4}$
- COM contributions similar to (d):
 - Instead of a 'hard' gluon, there would be multiple soft gluons.
- (c)-(f): parton \rightarrow some hadrons] in the central region;
 - for (d), hadrons near the Q
- $2 \rightarrow 2$ topologies contribute to $\Delta \phi_{Q-\gamma} = \pi$ (back-to-back);
 - smearing effect small for $P_T \gg \langle k_T \rangle$
- (c)-(f) populate $\Delta \phi_{Q-\gamma} < \pi$ [even $\Delta \phi \rightarrow 0$ for (c) and (d) at large P_T]
$Q + \gamma$: back-to-back and both isolated

- The studies is of an isolated quarkonium back-to-back with an (isolated) photon selects the Born contributions to $Q + \gamma$.
$Q + \gamma$: back-to-back and both isolated

- The studies is of an isolated quarkonium back-to-back with an (isolated) photon selects the Born contributions to $Q + \gamma$

- The “back-to-back” requirement also limits the DPS contributions [a priori evenly distributed in $\Delta \phi$]
\(Q + \gamma \): back-to-back and both isolated

- The studies is of an isolated quarkonium back-to-back with an (isolated) photon selects the Born contributions to \(Q + \gamma \)

- The “back-to-back” requirement also limits the DPS contributions [a priori evenly distributed in \(\Delta \phi \)]

- Unique candidate to pin down the gluon TMDs
 - gluon sensitive process
 - colourless final state (virtue of isolation): TMD factorisation applicable
 - small sensitivity to QCD corrections (most of them in the TMD evolution)
Expected rates for back-to-back $Q + \gamma$

Direct back-to-back Onium + γ at $\sqrt{s} = 14$ TeV

$\mu_R = \mu_F = m_{onium}^T$ | $m_Q = m_{onium}/2$
$\ |Y| < 0.5; |\cos\theta_{CS}| < 0.45$

$q-q$ (x 50)
$g-g$

Color Singlet
Color Octet

$\langle O^{1S_0^{[8]}}(\Upsilon) \rangle = 0.1$ GeV3
$\langle O^{3S_1^{[8]}}(\Upsilon) \rangle = 0.01$ GeV3
$\langle O^{1S_0^{[8]}}(J/\psi) \rangle = 0.2$ GeV3
$\langle O^{3S_1^{[8]}}(J/\psi) \rangle = 0.002$ GeV3
Expected rates for back-to-back $Q + \gamma$

Direct back-to-back Onium + γ at $\sqrt{s}=14$ TeV

- $\mu_R = \mu_F = m_{\text{onium}}^T | m_Q = m_{\text{onium}}/2$
- $|Y| < 0.5; |\cos \theta_{CS}| < 0.45$

- $q\bar{q}$ contribution negligible;

- $g-g$ contribution:
 - $\langle O^{1S_0}[8] (\Upsilon) \rangle = 0.1 \text{ GeV}^3$
 - $\langle O^{3S_1}[8] (\Upsilon) \rangle = 0.01 \text{ GeV}^3$
 - $\langle O^{1S_0}[8] (J/\psi) \rangle = 0.02 \text{ GeV}^3$
 - $\langle O^{3S_1}[8] (J/\psi) \rangle = 0.002 \text{ GeV}^3$

- $q\bar{q}$ contribution:
 - $\langle O^{1S_0}[8] (\Upsilon) \rangle = 0.1 \text{ GeV}^3$
 - $\langle O^{3S_1}[8] (\Upsilon) \rangle = 0.01 \text{ GeV}^3$
 - $\langle O^{1S_0}[8] (J/\psi) \rangle = 0.02 \text{ GeV}^3$
 - $\langle O^{3S_1}[8] (J/\psi) \rangle = 0.002 \text{ GeV}^3$
Expected rates for back-to-back $Q + \gamma$

Direct back-to-back Onium + γ at $\sqrt{s} = 14$ TeV

- $\mu_R = \mu_F = m_{\text{onium}}^T | m_Q = m_{\text{onium}}/2$
- $|Y| < 0.5; |\cos\theta_{CS}| < 0.45$

$q\bar{q}$ contribution negligible;
CO (orange) smaller than CS (blue): isolation not needed for Υ
Expected rates for back-to-back $Q + \gamma$

Direct back-to-back Onium $+$ γ at $\sqrt{s}=14$ TeV

- $q\bar{q}$ contribution negligible;
- CO (orange) smaller than CS (blue): isolation not needed for Υ
- At 14 TeV, $\sigma(J/\psi|\Upsilon + \gamma, Q > 20\text{GeV}) \simeq 100\text{fb}$; about half at 7 TeV

$\mu_R=\mu_F=m_{\text{onium}} \quad m_Q=m_{\text{onium}}/2$

$|Y| < 0.5; |\cos\theta_{CS}| < 0.45$

$q\bar{q}$ (x 100)

g-g

$<O_1^{\text{S}_0}[8](\Upsilon) >= 0.1 \text{ GeV}^3$

$<O_3^{\text{S}_1}[8](\Upsilon) >= 0.01 \text{ GeV}^3$

$<O_1^{\text{S}_0}[8](J/\psi) >= 0.02 \text{ GeV}^3$

$<O_3^{\text{S}_1}[8](J/\psi) >= 0.002 \text{ GeV}^3$
Expected rates for back-to-back $Q + \gamma$

Direct back-to-back Onium + γ at sqrt(s)=14 TeV

<table>
<thead>
<tr>
<th>Color Singlet</th>
<th>Color Octet</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_R=\mu_F=m_{onium}$</td>
<td>$m_{Q}=m_{onium}/2$</td>
</tr>
<tr>
<td>$</td>
<td>Y</td>
</tr>
</tbody>
</table>

- $q\bar{q}$ contribution negligible;
- CO (orange) smaller than CS (blue): isolation not needed for Υ
- At 14 TeV, $\sigma(J/\psi|\Upsilon + \gamma, Q > 20\text{GeV}) \approx 100\text{fb}$; about half at 7 TeV
- With the $\mathcal{L} \approx 20 \text{ fb}^{-1}$ of pp data on tape, one expects up to 2000 events
The q_T-differential cross section involves $f_1^g(x, k_T, \mu_F)$ and $h_1^{\perp g}(x, k_T, \mu_F)$

$$
\frac{d\sigma}{dQ dY d^2q_T d\Omega} = \frac{C_0(Q^2 - M_Q^2)}{s Q^3 D} \left\{ F_1 C [f_1^g f_1^g] + F_3 \cos(2\phi_{CS}) C [w_3 f_1^g h_1^{\perp g} + x_1 \leftrightarrow x_2] + F_4 \cos(4\phi_{CS}) C [w_4 h_1^{\perp g} h_1^{\perp g}] \right\} + O\left(\frac{q_T^2}{Q^2}\right)
$$
back-to-back $Q + \gamma$ and the gluon TMDs

The q_T-differential cross section involves $f_1^g(x, k_T, \mu_F)$ and $h_1^{+g}(x, k_T, \mu_F)$

$$\frac{d\sigma}{dQdYd^2q_Td\Omega} = \frac{C_0(Q^2 - M_Q^2)}{s Q^3D} \left\{ F_1 C \left[f_1^g f_1^g \right] + F_3 \cos(2\phi_{CS}) C \left[w_3 f_1^g h_1^{+g} + x_1 \leftrightarrow x_2 \right] + F_4 \cos(4\phi_{CS}) C \left[w_4 h_1^{+g} h_1^{+g} \right] \right\} + \mathcal{O}\left(\frac{q_T^2}{Q^2}\right)$$

We define: $S_{q_T}^{(n)} = \left(\frac{d\sigma}{dQdYd\cos(\theta_{CS})}\right)^{-1} \int d\phi_{CS} \pi \cos(n\phi_{CS}) \frac{d\sigma}{dQdYd^2q_Td\Omega}$
back-to-back $Q + \gamma$ and the gluon TMDs

The q_T-differential cross section involves $f_1^g(x, k_T, \mu_F)$ and $h_{1\perp}^g(x, k_T, \mu_F)$

$$\frac{d\sigma}{dQdYd^2q_Td\Omega} = \frac{C_0(Q^2 - M_Q^2)}{sQ^3D} \left\{ F_1 C[f_1^g f_1^g] + F_3 \cos(2\phi_{CS}) C[w_3 f_1^g h_{1\perp}^g + x_1 \leftrightarrow x_2] + F_4 \cos(4\phi_{CS}) C[w_4 h_{1\perp}^g h_{1\perp}^g] \right\} + \mathcal{O}(q_T^2)$$

We define: $S_{q_T}^{(n)} = \left(\frac{d\sigma}{dQdYd\cos(\theta_{CS})} \right)^{-1} \int d\phi_{CS} \pi \cos(n\phi_{CS}) \frac{d\sigma}{dQdYd^2q_Td\Omega}$

$S_{q_T}^{(0)} = \frac{C[f_1^g f_1^g]}{\int dq_T^2 C[f_1^g f_1^g]}$: does not involve $h_{1\perp}^g$ [not always the case]
back-to-back $Q + \gamma$ and the gluon TMDs

The q_T-differential cross section involves $f_1^g(x, \mathbf{k}_T, \mu_F)$ and $h_1^g(x, \mathbf{k}_T, \mu_F)$

$$
\frac{d\sigma}{dQ dY d^2q_T d\Omega} = \frac{C_0(Q^2 - M_Q^2)}{s Q^3 D} \left\{ F_1 C[f_1^g f_1^g] + F_3 \cos(2\phi_{CS}) C[w_3 f_1^g h_1^g + x_1 \leftrightarrow x_2] + F_4 \cos(4\phi_{CS}) C[w_4 h_1^g h_1^g] \right\} + O\left(\frac{q_T^2}{Q^2}\right)
$$

We define: $S_{q_T}^{(n)} = \left(\frac{d\sigma}{dQ dY d\cos\theta_{CS}}\right)^{-1} \int d\phi_{CS} \pi \cos(n\phi_{CS}) \frac{d\sigma}{dQ dY d^2q_T d\Omega}$

- $S_{q_T}^{(0)} = \frac{C[f_1^g f_1^g]}{\int dq_T^2 C[f_1^g f_1^g]}$: does not involve h_1^g [not always the case]

- $S_{q_T}^{(4)} = \frac{F_4 C[w_4 h_1^g h_1^g]}{2 F_1 \int dq_T^2 C[f_1^g f_1^g]}$:

$S_{q_T}^{(4)} \neq 0 \Rightarrow$ nonzero gluon polarisation in unpolarised protons!
back-to-back $Q + \gamma$ and the gluon TMDs

The \vec{q}_T-differential cross section involves $f^g_1(x, \vec{k}_T, \mu_F)$ and $h_1^{\perp g}(x, \vec{k}_T, \mu_F)$

$$\frac{d\sigma}{dQdYd^2\vec{q}_T d\Omega} = \frac{C_0(Q^2 - M^2_\gamma)}{s Q^3 D} \left\{ F_1 C[f^g_1 f^g_1] + F_3 \cos(2\phi_{CS}) C[w_3 f^g_1 h_1^{\perp g} + x_1 \leftrightarrow x_2] + F_4 \cos(4\phi_{CS}) C[w_4 h_1^{\perp g} h_1^{\perp g}] \right\} + \mathcal{O}\left(\frac{q^2_T}{Q^2}\right)$$

We define: $S_{\vec{q}_T}^{(n)}(\vec{q}_T) = \left(\frac{d\sigma}{dQdYd\cos\theta_{CS}}\right)^{-1} \int d\phi_{CS} \pi \cos(n\phi_{CS}) \frac{d\sigma}{dQdYd^2\vec{q}_T d\Omega}$

- $S_{\vec{q}_T}^{(0)} = \frac{C[f^g_1 f^g_1]}{\int d\vec{q}_T^2 C[f^g_1 f^g_1]}$: does not involve $h_1^{\perp g}$ [not always the case]

- $S_{\vec{q}_T}^{(4)} = \frac{F_4 C[w_4 h_1^{\perp g} h_1^{\perp g}]}{2F_1 \int d\vec{q}_T^2 C[f^g_1 f^g_1]}$

$S_{\vec{q}_T}^{(4)} \neq 0 \Rightarrow$ nonzero gluon polarisation in unpolarised protons!

- $S_{\vec{q}_T}^{(4)} = \frac{F_4 C[w_4 h_1^{\perp g} h_1^{\perp g}]}{2F_1 \int d\vec{q}_T^2 C[f^g_1 f^g_1]}$
Results with UGDs as Ansätze for TMDs

$S_{q_T}^{(0)}(x, k_T)$ from the q_T-dependence of the yield.
Results with UGDs as Ansätze for TMDs

$S_{q_T}^{(0)} : f_1^g(x, k_T)$ from the q_T-dependence of the yield.

$S_{q_T}^{(4)} : \int dq_T S_{q_T}^{(4)}$ should be measurable [$\mathcal{O}(1 - 2\%)$: ok with 2000 events]
Results with UGDs as Ansätze for TMDs

\[S_{q_T}^{(0)}(0) : f_1^g(x, k_T) \] from the \(q_T \)-dependence of the yield.

\[S_{q_T}^{(4)} : \int dq_T S_{q_T}^{(4)} \] should be measurable [\(\mathcal{O}(1 - 2\%) \): ok with 2000 events]

\[S_{q_T}^{(2)} : \] slightly larger than \(S_{q_T}^{(4)} \)
Part IV

Quarkonium + Z boson
Rates similar for $\Upsilon + Z$ and $J/\psi + Z$ [Same for $Q + \gamma$ for $Q \gtrsim 20$ GeV]
Y + Z cross sections

- Rates similar for $\Upsilon + Z$ and $J/\psi + Z$ [Same for $Q + \gamma$ for $Q \gtrsim 20$ GeV]

\[
\frac{d\sigma}{dP_T} \times Br (fb/GeV)
\]

\[
sqrt(s)=8 \text{ TeV} \quad \mu_R=\mu_F=m_Z \quad |y_{J/\psi}| < 2.4
\]

\[
\frac{d\sigma}{dP_T} \times Br (fb/GeV)
\]

\[
sqrt(s)=8 \text{ TeV} \quad \mu_R=\mu_F=m_Z \quad |y_{\Upsilon}| < 2.4
\]
Rates similar for $\Upsilon + Z$ and $J/\psi + Z$ [Same for $Q + \gamma$ for $Q \gtrsim 20$ GeV]

Potential probe of gluon TMDs as well
Rates similar for $\Upsilon + Z$ and $J/\psi + Z$ [Same for $Q + \gamma$ for $Q \gtrsim 20$ GeV]

- Potential probe of gluon TMDs as well
- Rate clearly smaller than $Q + \gamma$ even at low P_T
$Y + Z$ and TMDs

- $Y + Z @ \sqrt{s} = 14 \text{ TeV}$;
- $Q = 120 \text{ GeV}, Y = 0, \theta = \pi/2$
Y + Z and TMDs

- Y + Z @ $\sqrt{s} = 14$ TeV;
- $Q = 120$ GeV, $Y = 0$, $\theta = \pi/2$

$S^{(n)}_{qT}$ smaller than for $Q + \gamma$ [one can integrate up to larger q_T, though]
Y + Z and TMDs

- $Y + Z @ \sqrt{s} = 14$ TeV;
- $Q = 120$ GeV, $Y = 0, \theta = \pi/2$

$S^{(n)}(\sqrt{s_{cm}}=14$ TeV, $Q=120$ GeV, $Y=0, q_T, \theta=\pi/2)$ vs. q_T for the process $p+p \rightarrow Y+Z+X$

$S^{(n)}(\sqrt{s_{cm}}=14$ TeV, $Q=120$ GeV, $Y=0, q_T, \theta=\pi/2)$ vs. q_T for the process $p+p \rightarrow Y+Z+X$

- $S_{q_T}^{(n)}$ smaller than for $Q + \gamma$ [one can integrate up to larger q_T, though]
- Naturally large Q: interest to study the scale evolution?
Conclusions and Outlooks

- **TMD studies in the gluon sector** are very promising.
Conclusions and Outlooks

- **TMD studies in the gluon sector** are very promising.
- With lepton beams, only possible at an EIC.
Conclusions and Outlooks

- TMD studies in the gluon sector are very promising
- With lepton beams, only possible at an EIC
- If we don’t want to wait for 10 years, LHC can help, right now!
Conclusions and Outlooks

- TMD studies in the gluon sector are very promising.
- With lepton beams, only possible at an EIC.
- If we don’t want to wait for 10 years, LHC can help, right now!
- Low $P_T \eta_c$ production [below $M_{\eta_c}/2$] is highly challenging, probably impossible with the current detectors.
Conclusions and Outlooks

- TMD studies in the gluon sector are very promising.
- With lepton beams, only possible at an EIC.
- If we don’t want to wait for 10 years, LHC can help, right now!
- Low $P_T \eta_c$ production [below $M_{\eta_c}/2$] is highly challenging, probably impossible with the current detectors.
- Di-photon production is perhaps more tractable but very challenging where the rates are high.

J.P. Lansberg (IPNO)
Gluon TMDs and Quarkonium Production
October 20, 2014 21 / 21
Conclusions and Outlooks

- **TMD studies in the gluon sector** are very promising
- With lepton beams, only possible at an EIC
- If we don’t want to wait for 10 years, **LHC can help**, right now!
- Low $P_T \eta_c$ production [below $M_{\eta_c}/2$] is highly challenging, probably impossible with the current detectors
- Di-photon production is perhaps more tractable but very challenging where the rates are high
- **Back-to-back $J/\psi + \gamma$ and $\Upsilon + \gamma$** is certainly at reach
 - Already a couple of thousand **events on tapes**
 - $f_1^g(x, k_T, \mu)$ and $h_{1g}^\perp(x, k_T, \mu)$ can be determined **separately**
 - Q can even be **tuned → gluon TMD evolution**
Conclusions and Outlooks

- **TMD studies in the gluon sector** are very promising.
- With lepton beams, only possible at an EIC.
- If we don’t want to wait for 10 years, LHC can help, right now!
- Low $P_T \eta_c$ production [below $M_{\eta_c}/2$] is highly challenging, probably impossible with the current detectors.
- Di-photon production is perhaps more tractable but very challenging where the rates are high.
- Back-to-back $J/\psi + \gamma$ and $\Upsilon + \gamma$ is certainly at reach:
 - Already a couple of thousand events on tapes.
 - $f_1^g(x, k_T, \mu)$ and $h_1^g(x, k_T, \mu)$ can be determined separately.
 - Q can even be tuned \rightarrow gluon TMD evolution.
- Low P_T onium and SSA of onium+photon studies could be done with **A Fixed-Target Experiment at the LHC: AFTER@LHC**
 [see talk by L. Massacrier on Friday, S11, 9h35]
Part V

Backup
$S_{qT}^{(0)}$: Model predictions for $\Upsilon + \gamma$ production at $\sqrt{s} = 14$ TeV

$Q = 20$ GeV, $Y = 0$, $\theta_{CS} = \pi/2$

Models for f_1^g: assumed to be the same as for Unintegrated Gluon Distributions

- **Set B**: B0 solution to CCFM equation with input based on HERA data
 Jung et al., EPJC 70 (2010) 1237

- **KMR**: Formalism embodies both DGLAP and BFKL evolution equations
 Kimber, Martin, Ryskin, PRD 63 (2010) 114027

- **CGC**: Color Glass Condensate Model
 Dominguez, Qiu, Xiao, Yuan, PRD 85 (2012) 045003
 Metz, Zhou, PRD 84 (2011) 051503
Model predictions for $\Upsilon + \gamma$ production at $\sqrt{s} = 14$ TeV

$Q = 20$ GeV, $Y = 0$, $\theta_{CS} = \pi/2$

$h_1^\perp g$: predictions only in the CGC: in the other models saturated to its upper bound

$S_{q_T}^{(2,4)}$ smaller than $S_{q_T}^{(0)}$: can be integrated up to $q_T = 10$ GeV

$$2.0\% \ (\text{KMR}) < \left| \int d^2 q_T S_{q_T}^{(2)} \right| < 2.9\% \ (\text{Gauss})$$

$$0.3\% \ (\text{CGC}) < \int d^2 q_T S_{q_T}^{(4)} < 1.2\% \ (\text{Gauss})$$

Possible determination of the shape of f_1^g and verification of a non-zero $h_1^\perp g$
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \rightarrow \gamma^* W \rightarrow J/\psi W$ and $q\bar{q}' \rightarrow g^* W \rightarrow J/\psi W$ are very similar

why?
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \rightarrow \gamma^* W \rightarrow J/\psi W$ and $q\bar{q}' \rightarrow g^* W \rightarrow J/\psi W$ are very similar. Why?

Let us simplify and look at $q\bar{q}' \rightarrow \gamma^* \rightarrow J/\psi$ vs. $q\bar{q}' \rightarrow g^* \rightarrow J/\psi$. The cross sections are well-known:

-CSM: \[\hat{\sigma}^{[1]} \] via $\gamma^* = \left(4\pi\alpha\right)^2 e^2 q e^2 Q M_3 Q_s \delta \left(x_1 x_2 - M_2 Q/s\right) |R(0)|^2 \]

-COM: \[\hat{\sigma}^{[8]} \] via $g^* = \left(4\pi\alpha S\right)^2 \pi^2 27 M_3 Q_s \delta \left(x_1 x_2 - M_2 Q/s\right) \langle O Q(3 S[1]) \rangle \]

The ratio gives:

\[\hat{\sigma}^{[1]} / \hat{\sigma}^{[8]} = \frac{6}{\alpha^2} e^2 q e^2 Q \langle O Q(3 S[1]) \rangle / \langle O Q(3 S[8]) \rangle = 2 N_c (2J + 1) |R(0)|^2 / 4 \pi \]

Colour factor: 2
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \rightarrow \gamma^* W \stackrel{3 S_1^{[1]}}{\rightarrow} J/\psi W$ and $q\bar{q}' \rightarrow g^* W \stackrel{3 S_1^{[8]}}{\rightarrow} J/\psi W$ are very similar

why?

Let us simplify and look at

$q\bar{q}' \rightarrow \gamma^* \rightarrow J/\psi$ vs. $q\bar{q}' \rightarrow g^* \rightarrow J/\psi$

The cross sections are well-known:

$$\hat{\sigma} \left[3 S_1^{[1]} \right]_{\gamma^*} \rightarrow J/\psi \longrightarrow \frac{6 \alpha^2 e_q^2}{\left(3 S_1^{[1]} \right)_{\hat{O} Q} \left(3 S_1^{[8]} \right)_{\hat{O} Q}} \alpha^2 S \left[\langle O Q \left(3 S_1^{[1]} \right)_{\hat{O} Q} \rangle \langle O Q \left(3 S_1^{[8]} \right)_{\hat{O} Q} \rangle \right] \frac{1}{2 N_c (2J+1)} \left| R \left(0 \right) \right|^2 \frac{1}{4 \pi}$$

Colour factor: $2 N_c (2J+1)$
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \rightarrow \gamma^* W \rightarrow J/\psi W$ and $q\bar{q}' \rightarrow g^* W \rightarrow J/\psi W$ are very similar why?

Let us simplify and look at:

$q\bar{q}' \rightarrow \gamma^* \rightarrow J/\psi$ vs. $q\bar{q}' \rightarrow g^* \rightarrow J/\psi$

The cross sections are well-known:

- **CSM**: $\hat{\sigma}_{\gamma^*}^{[1]} = \frac{(4\pi\alpha)^2 e_q^2 e_Q^2}{M_Q^3 s} \delta (x_1 x_2 - M_Q^2 / s) |R(0)|^2$

- **COM**: $\hat{\sigma}_{g^*}^{[8]}$
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \to \gamma^* W \to J/\psi W$ and $q\bar{q}' \to g^* W \to J/\psi W$ are very similar why?

Let us simplify and look at $q\bar{q}' \to \gamma^* J/\psi$ vs. $q\bar{q}' \to g^* J/\psi$

The cross sections are well-known:

- **CSM:** $\hat{\sigma}^{[1]}_{\gamma^*} = \frac{(4\pi\alpha)^2 e_q^2 e_Q^2}{M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s \right) |R(0)|^2$

- **COM:** $\hat{\sigma}^{[8]}_{g^*} = \frac{(4\pi\alpha_s)^2 \pi}{27M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s \right) \langle \mathcal{O}_{Q\left(3S_1^{[8]}\right)} \rangle$
Discussion: CSM via $\gamma^* vs. COM via g^*$

$q\bar{q}' \to \gamma^* W \rightarrow J/\psi W$ and $q\bar{q}' \to g^* W \rightarrow J/\psi W$ are very similar why?

Let us simplify and look at $q\bar{q}' \to \gamma^* \rightarrow J/\psi$ vs. $q\bar{q}' \to g^* \rightarrow J/\psi$

The cross sections are well-known:

- **CSM**: \(\hat{\sigma}_{\gamma^*}^{[1]} = \frac{(4\pi\alpha)^2 e_q^2 e_Q^2}{M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s \right) |R(0)|^2 \)

- **COM**: \(\hat{\sigma}_{g^*}^{[8]} = \frac{(4\pi\alpha S)^2\pi}{27M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s \right) \langle O_Q(3S_1^{[1]}) \rangle \)

The ratio gives:

\[
\frac{\hat{\sigma}_{\gamma^*}^{[1]}}{\hat{\sigma}_{g^*}^{[8]}} = \frac{6\alpha^2 e_q^2 e_Q^2 \langle O_Q(3S_1^{[1]}) \rangle}{\alpha_s^2 \langle O_Q(3S_1^{[8]}) \rangle} = \frac{2N_c(2J + 1) |R(0)|^2}{4\pi} \]

\(\langle O_Q(3S_1^{[1]}) \rangle = 2N_c(2J + 1) |R(0)|^2 \)
Discussion: CSM via γ^* vs. COM via g^*

$q\bar{q}' \to \gamma^* W \to J/\psi W$ and $q\bar{q}' \to g^* W \to J/\psi W$ are very similar. Why?

Let us simplify and look at $q\bar{q}' \to \gamma^*$ vs. $q\bar{q}' \to g^*$.

The cross sections are well-known:

- **CSM:**
 \[
 \hat{\sigma}_{\gamma^*}^{[1]} = \frac{(4\pi\alpha)^2 e_Q^2 e^2_q}{M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s\right) |R(0)|^2
 \]

- **COM:**
 \[
 \hat{\sigma}_{g^*}^{[8]} = \frac{(4\pi\alpha S)^2 \pi}{27 M_Q^3 s} \delta \left(x_1 x_2 - M_Q^2 / s\right) \langle O_Q(3S_1^{[8]}) \rangle
 \]

The ratio gives:

\[
\frac{\hat{\sigma}_{\gamma^*}^{[1]}}{\hat{\sigma}_{g^*}^{[8]}} = \frac{6\alpha^2 e_Q^2 e^2_q \langle O_Q(3S_1^{[1]}) \rangle}{\alpha_S^2 \langle O_Q(3S_1^{[8]}) \rangle} = \frac{2N_c(2J + 1)}{4\pi} |R(0)|^2
\]

Colour factor: $2N_c$
Discussion: CSM via γ^* vs. COM via g^*

$$\frac{\hat{\sigma}_{\text{via } \gamma^*}^{[1]}}{\hat{\sigma}_{\text{via } g^*}^{[8]}} = \frac{6\alpha^2 e_q^2 e_Q^2 \langle O_Q(3S_1^{[1]}) \rangle}{\alpha_s^2 \langle O_Q(3S_1^{[8]}) \rangle}$$

The ratio depends on the initial quark, q, on α_s at $\mu_R \approx m_Q$ and on the ratio of the non-perturbative coefficients. For J/ψ production in $u\bar{u}$ fusion and for $\langle O_{J/\psi}(3S_1^{[8]}) \rangle = 2 \times 10^{-3} \text{GeV}^3$, the ratio CSM vs. COM is $2/3$.

For Υ production, it is about the same (e.g. smaller but α_s also smaller and $|R(0)|^2$ larger).

If we add the W emission, the charge factor changes and μ_R: $O(m_Q) \rightarrow O(m_W)$...

General conclusion: For production processes involving light quarks, the CSM via off-shell photon competes with the COM via off-shell gluon.
The ratio depends on the initial quark, \(q \), on \(\alpha_s \) at \(\mu_R \approx m_Q \) and on the ratio of the non-perturbative coefficients.
Discussion: CSM via γ^* vs. COM via g^*

\[
\frac{\hat{\sigma}^{[1]}_{\text{via } \gamma^*}}{\hat{\sigma}^{[8]}_{\text{via } g^*}} = \frac{6\alpha_s^2 e_q^2 e_Q^2 \langle O_Q \left(^3S_1^{[1]} \right) \rangle}{\alpha_s^2 \langle O_Q \left(^3S_1^{[8]} \right) \rangle}
\]

- The ratio depends on the initial quark, q, on α_s at $\mu_R \simeq m_Q$ and on the ratio of the non-perturbative coefficients.

- For J/ψ production in $u\bar{u}$ fusion and for $\langle O_{J/\psi} \left(^3S_1^{[8]} \right) \rangle = 2.2 \times 10^{-3}$ GeV3, the ratio CSM vs. COM is $2/3$.
Discussion: CSM via γ^* vs. COM via g^*

\[
\frac{\hat{\sigma}^{[1]}_{\text{via } \gamma^*}}{\hat{\sigma}^{[8]}_{\text{via } g^*}} = \frac{6\alpha_s^2 e_q^2 e_Q^2 \langle \mathcal{O}_Q(3S_1^{[1]}) \rangle}{\alpha_s^2 \langle \mathcal{O}_Q(3S_1^{[8]}) \rangle}
\]

- The ratio depends on the initial quark, q, on α_s at $\mu_R \approx m_Q$ and on the ratio of the non-perturbative coefficients.
- For J/ψ production in $u\bar{u}$ fusion and for
 \[
 \langle O_{J/\psi}(3S_1^{[8]}) \rangle = 2.2 \times 10^{-3} \text{ GeV}^3, \text{ the ratio CSM vs. COM is } 2/3
 \]
- For Υ production, it is about the same
 (\(e_Q\) smaller but \(\alpha_s\) also smaller and \(|R(0)|^2\) larger)
Discussion: CSM via γ^* vs. COM via g^*

\[
\frac{\hat{\sigma}^{[1]}_{\text{via } \gamma^*}}{\hat{\sigma}^{[8]}_{\text{via } g^*}} = \frac{6\alpha_s^2 e_q^2 e_Q^2 \langle O_Q(3S_1^{[1]}) \rangle}{\alpha_s^2 \langle O_Q(3S_1^{[8]}) \rangle}
\]

- The ratio depends on the initial quark, q, on α_s at $\mu_R \simeq m_Q$ and on the ratio of the non-perturbative coefficients.
- For J/ψ production in $u\bar{u}$ fusion and for $\langle O_{J/\psi}(3S_1^{[8]}) \rangle = 2.2 \times 10^{-3}$ GeV3, the ratio CSM vs. COM is $2/3$.
- For Υ production, it is about the same (with e_Q smaller but α_s also smaller and $|R(0)|^2$ larger).
- If we add the W emission, the charge factor changes and $\mu_R : \mathcal{O}(m_Q) \rightarrow \mathcal{O}(m_W)$.
 \[\rightarrow \text{This explains our results for } J/\psi + W\]
Discussion: CSM via γ^* vs. COM via g^*

$$\frac{\tilde{\sigma}^{[1]}_{\text{via } \gamma^*}}{\tilde{\sigma}^{[8]}_{\text{via } g^*}} = \frac{6\alpha^2 e_q^2 e_Q^2 \langle O_Q(3S_1^{[1]}) \rangle}{\alpha_s^2 \langle O_Q(3S_1^{[8]}) \rangle}$$

- The ratio depends on the initial quark, q, on α_s at $\mu_R \approx m_Q$ and on the ratio of the non-perturbative coefficients.
- For J/ψ production in $u\bar{u}$ fusion and for $\langle O_{J/\psi}(3S_1^{[8]}) \rangle = 2.2 \times 10^{-3}$ GeV3, the ratio CSM vs. COM is $2/3$.
- For Υ production, it is about the same (e_Q smaller but α_s also smaller and $|R(0)|^2$ larger).
- If we add the W emission, the charge factor changes and $\mu_R: \mathcal{O}(m_Q) \rightarrow \mathcal{O}(m_W)$.

\rightarrow This explains our results for $J/\psi + W$.

General conclusion:

For production processes involving light quarks, the CSM via off-shell photon competes with the COM via off-shell gluon.