Development of Neutron Polarization Measurement System for Studying NN Interaction in Nuclear Medium

Department of Physics, Kyushu University

Jumpei YASUDA

The importance of nuclear medium effect

Nucleus

- quantum many-body system consists of nucleons
- size of nucleon : ~ 0.8 fm
- average nucleon distance in nucleus : \sim 1.8 fm

nucleons are overlap in nucleus

- In nuclear medium
 - Change the nucleon meson properties ?
 - **Modified the NN int. in nuclear medium ?**
 - Nuclear medium effect is crucial for understanding nuclear system.

How to study the medium effect

- Quasi-elastic knock out reaction
 - intermediate kinetic energy ~ 300 MeV
 - de Broglie wave length < average nucleon distance (~2 fm)
 - ▶ incident nucleon directly interact with an in-medium nucleon
- © Comparison of NN scattering in free space and in nuclear medium
 - Medium effects on NN int.
 - Density dependence

Spin observables and medium effects

Origin of medium effects

- Fermi motion
- Distortions
- controllable
- Pauli blocking
- Modification of meson mass and coupling constants
 - Restoration of chiral symmetry in nuclear medium

Meson property

	σ	ω	ρ	
mass (MeV/c²)	~550	770	782.6	
range (fm)	~0.18	0.128	0.126	
Potential	$egin{aligned} V^{\sigma} &= g_{\sigma NN}^2 rac{1}{k^2 + m_{\sigma}^2} \ & \left(-1 + rac{q^2}{2M_N^2} - rac{k^2}{8M_N^2} ight] - rac{LS}{2M_N^2} \ \end{aligned}$	$V^\omega = g^2_{\omega NN} rac{1}{k^2 + m^2_\omega} \left(1 - 3 rac{LS}{2M^2_N} ight)$	$V^{ ho} = g_{ ho NN}^2 rac{k^2}{k^2 + m_{ ho}^2} \ \left(-2\sigma_1\sigma_2 + S_{12}(\hat{k}) ight) au_1 au_2$	

- σ, ω, ρ have large mass compared with π (138.03 MeV/c²)
 - short range interaction
- σ, ω, ρ have different spin dependence term
- Spin observables are important to understand how each meson modified in nuclear medium.

How to study the density dependence

- Radial wave function of each L
 - only s-orbit (L=0) has no centrifugal force
 - deeply bound
 - can be high density

Effective nuclear density can be defined and controlled

1s _{1/2} knockout	2H	6Li	12C
Effective density (relative to ρ0)	5%	20%	30%

Measuring s-orbit provide a good basis for studying density dependence

Separation 1s-orbit via (p,pN) reaction

Exclusive (p,pN) measurement

- measure both of two outgoing nucleons are explicitly detected
 - measure kinetic energy (T), momentum (P) and angle (θ)
 - ▶ recoil momentum P₃ (T₃) can be determined from the momentum and energy
 - conservation
 - Separation energy can be specify
 - Es = T_0 $(T_1 + T_2 + T_3)$
 - **➡** Specify the 1s-orbit

separation

energy

Medium effect studied through spin observables

Spin observables

- Analyzing power (A_y): sensitive to the relative <u>phase</u> of NN int.
- Polarization transfer (D_{ij}): sensitive to the relative <u>amplitude</u> of NN int
 - medium effect in A_y is significantly different between [p-p] & [p-n]
 - ► How about the medium effect in D_{NN} in [p-n] ??

Purpose of this work

- Develop the measurement system for D_{NN} in (p,np) reaction
 - 1s-orbit separation
 - Neutron polarization measurement

Test experimental setup @ RCNP

Exclusive(p,np)measurement

need to separate 1s & 1p

need to suppress the B.G.

Exclusive(p,np) measurement

- Analysis by using kinematic condition / NPOL-LAS time difference
 - √ select the double scattering particle by NPOL3: constrain on the neutron from target
 - √ subtract accidental coincidence: constrain on the particle from same target
 - reduce the B.G. & success to separate 1s 1p orbit

Neutron detector NPOL3

Neutron detector

- 20 sets of 100cm x 10cm x 5cm hodoscopes (HD)
- Charged particle veto (CPV): 105cm × 35cm × 0.5cm
- Solid angle: 2.5 msr (flight pass length 20m)

Neutron polarization measurement

Neutron polarization measurement

- n+p scattering in HD
- detect the double scattering proton by CPD
- double scattering asymmetry
 → neutron polarization

$$p_N' = \frac{\epsilon \ \ \text{scattering asymmetry}}{\langle A_{y;\text{eff}} \rangle \text{effective analyzing power}}$$
 neutron pol.

asymmetry caused by the LS force

Neutron polarization measurement

Determination of Ay;eff

- use neutron from ²H(p,n) reaction
 - polarization is well known: p_N ~ 0.03

T. Wakasa PRC **69** 033602, (2004)

Select the n+p event

- A_{y:eff} become small by other events (n+C, γ)
 - n+C event (small A_v), γ event (A_v =0)
- $A_{y;eff} = 0.098 \pm 0.055$
- select the n+p event kinematically by using **TOF** information

 $A_{y;eff} = 0.127 \pm 0.059$

- Figure of merit : FOM = $\varepsilon \times (A_{yeff})^2 = 0.67 \times 10^{-4}$ $\varepsilon = 0.0042$
 - similar performance with INPOL (FOM=0.81, A_{yeff}=0.09)

double scattering angle (deg)

Results for ²H(p,np) reaction

separation energy E_s (MeV)

- required energy resolution
 - \sim 7 MeV
 - energy difference between 1s and 1p: ~15 MeV
- © cross section and Ay for ²H(p,np) reaction
 - √ consistent with PWIA calculation
 - →2H have no medium effect

Result for ⁶Li(p,np) reaction

- σ, Ay for 6Li(p,np) reaction for 1s state
 - ▼ theoretical cal. reasonably reproduce the experimental data
 - consistent with previous result :
 no medium effect in Ay for (p,np) reaction
- Polarization transfer D_{NN}
 - ★ required accuracy: ~ 0.10
 - Condition at future exp.
 - 2h (test exp.) → 76h (future exp.)
 - polarization $p_N: 0.40 \rightarrow 0.70$
 - accuracy 0.04 trouble at ion source

sufficient accuracy for studying medium effect

Result for ⁶Li(p,np) reaction

- σ, Ay for 6Li(p,np) reaction for 1s state
 - ▼ theoretical cal. reasonably reproduce the experimental data
 - consistent with previous result :
 no medium effect in Ay for (p,np) reaction
- Polarization transfer D_{NN}
 - ★ required accuracy: ~ 0.10
 - Condition at future exp.
 - 2h (test exp.) → 76h (future exp.)
 - polarization $p_N: 0.40 \rightarrow 0.70$
 - **⇒** accuracy 0.04

sufficient accuracy for studying medium effect

trouble at ion source

Summary

Medium effect is important to understand the nuclear system

- (p,np) reaction is a powerful tool to studying the medium effect on NN int.
 - 1s orbit —> density dependence
 - spin observables -> pin down the effect of σ , ω , ρ
 - ✓ An experimental method and setup has been established
 - √ separate 1s-orbit : energy resolution 6MeV
 - ✓ neutron polarization : Effective analyzing power : $A_{yeff} = 0.127 \pm 0.05$

- Future experiment [6Li,12C(p,np)] planned to be performed next year
 - studying how the NN interaction modified in nuclear medium

Collaborators

Kyushu University

T. Wakasa, T. Fukunaga, Y. Nishio, K. Ohnaka, S. Sakaguchi, T. Noro, Y. Maeda

RCNP, Osaka University

K. Hatanaka, A. Tamii, K. Miki

University of Miyazaki

Y. Maeda

Tohoku University

K. Sekiguchi, T. Taguchi, Y. Wada

CYRIC, Tohoku University

Y. Sakemi

CNS, University of Tokyo

M. Dozono

Summary

Medium effect is important to understand the nuclear system

- (p,np) reaction is a powerful tool to studying the medium effect on NN int.
 - 1s orbit —> density dependence
 - spin observables -> pin down the effect of σ , ω , ρ
 - ✓ An experimental method and setup has been established
 - √ separate 1s-orbit : energy resolution 6MeV
 - ✓ neutron polarization : Effective analyzing power : $A_{yeff} = 0.127 \pm 0.05$

- Future experiment [6Li,12C(p,np)] planned to be performed next year
 - studying how the NN interaction modified in nuclear medium

Back up

Result for ¹²C(p,np) reaction

- σ, Ay for ¹²C(p,np) reaction for 1s state

 - consistent with previous result :
 no medium effect in Ay for (p,np) reaction
- Polarization transfer D_{NN}
 - ★ required accuracy: ~ 0.10
 - Condition at future exp.
 - 5h (test exp.) → 126h (future exp.)

trouble at ion source

- polarization $p_N: 0.40 \rightarrow 0.70$
- **→** accuracy 0.04

Why D_{NN} for (p,np)

Physical consideration

- Spin observables for inclusive (p,n)
 - D_{NN} is much deviated from DWIA
 - Ay, D_{L'L}, D_{L's}, ... are reasonably reproduced by DWIA
 - → Medium effect would be significantly seen in D_{NN} for (p,np)

Experimental consideration

- We can measure D_{NN} w/o neutron spin-rotation magnet
- D_{L'L} and D_{L's} require neutron spin-rotation magnet

D_{NN} is suitable for the first measurement

Nuclear Force: One-Boson-Exchange

 Various meson-nucleon couplings and their contributions to the nuclear force as obtained from One-Boson-Exchange

Coupling	Bosons (Strength of Coupling)		Characteristics of Predicted Forces				
	I = 0	$I = 1 \\ [\tau_1 \cdot \tau_2]$	$Central \ [1]$	$Spin ext{-}Spin \ [oldsymbol{\sigma_1\cdot\sigma_2}]$	$Tensor \ [S_{12}]$	$Spin-Orbit \ [oldsymbol{L} \cdot oldsymbol{S}]$	
ps	η (weak)	π (strong)		weak,	strong		
.	σ (strong)	δ (weak)	strong, attractive	- .		coherent with	
v	ω (strong)	ρ (weak)	strong, repulsive	weak coherent with ps	opposite to ps	strong, coherent with	
t	ω (weak)	ρ (strong)		weak,	opposite to ps		

R. Machleidt, Advances in Nucl. Phys., Vol. 19, (1989)