Toward polarized antiprotons:

Machine development for spin-filtering experiments at COSY

P. Lenisa Università di Ferrara and INFN, Italy

SPIN 2014 - Beijing, October 21, 2014

Motivation

- The PAX collaboration proposed to investigate Drell Yan processes in scattering of polarized proton - antiproton beams at the HESR (FAIR).
- Annihilation of valence quark with an antivalence quark allows direct access to: transversity,

$$A_{TT} \equiv \frac{d\sigma^{\uparrow\uparrow} - d\sigma^{\uparrow\downarrow}}{d\sigma^{\uparrow\uparrow} + d\sigma^{\uparrow\downarrow}} = \hat{a}_{TT} \frac{\sum_{q} e_q^2 h_1^q(x_1, M^2) h_1^{\bar{q}}(x_2, M^2)}{\sum_{q} e_q^2 q(x_1, M^2) \bar{q}(x_2, M^2)}$$

• Requirements:

Polarized proton beam Polarized antiproton beam

How to Polarize Antiprotons?

4

Spin-1/2 particles: 2 states

selective removal

- Selective removal reduces beam intensity Selective flip does not affect intensity
- but at COSY we demonstrated that
- $e^{\pm} \overline{p}$ spin-flip cross-section is too low to use selective flip
 - D. Oellers. et al., Phys. Lett. B 674 (2009) 269.
 - D. Oellers. et al., Nucl. Instrum. Meth. A 759, 6 (2014).

$$\sigma_{\parallel} < 8.0 * 10^6 \text{ b}$$

 $\sigma_{\perp} < 5.5 * 10^6 \text{ b}$

Spin-filtering

Polarization build-up of a circulating particle beam by interaction with a polarized gas target

Spin-filtering

$$\sigma_{tot} = \sigma_0 + \sigma_1(\vec{P} \cdot \vec{Q}) + \sigma_2(\vec{P} \cdot \hat{k})(\vec{Q} \cdot \hat{k})$$

P...beam particle spin orientation Q...target particle spin orientation k // beam direction

$$P(t) = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}} = \tanh\left(\frac{t}{\tau_{1}}\right) \approx t \cdot \widetilde{\sigma}_{1} \cdot Q \cdot d_{t} \cdot f$$

Spin-filtering

$$\sigma_{tot} = \sigma_0 + \sigma_1(\vec{P} \cdot \vec{Q}) + \sigma_2(\vec{P} \cdot \hat{k})(\vec{Q} \cdot \hat{k})$$

P...beam particle spin orientation Q...target particle spin orientation k // beam direction

$$P(t) = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}} = \tanh\left(\frac{t}{\tau_{1}}\right) \approx t \cdot \widetilde{\sigma}_{1} \cdot Q \cdot d_{t} \cdot f$$

PAX submitted new proposal to find out how well does spin filtering work for antiprotons

Measurement of the Spin-Dependence of the pp Interaction at the AD Ring

(CERN-SPSC-2009-012 / SPSC-P-337)

Spin-dependence of the pbar-p interaction

Model A: T. Hippchen et al., Phys. Rev. C 44, 1323 (1991).

Model OBEPF: J. Haidenbauer, K. Holinde, A.W. Thomas, Phys. Rev. C 45, 952 (1992).

Model D: V. Mull, K. Holinde, Phys. Rev. C 51, 2360 (1995).

Oct. 2009 SPS Committee:

... Taking into account the timeline and constraints of the various projects concerned, the SPSC encourages the PAX Collaboration to first perform their spin filtering measurements at COSY...

Spin Filtering at COSY

Spin filtering with protons to confirm understanding of the process and to commission the experimental setup

- Length: 183.4 m
- Injection energy: 45 MeV
- Electron cooling for long lifetimes up to 600 MeV/c (p)

Spin-filtering cycle

Spin-filtering: result

W. Augustyniak et al., Physi. Lett. B 712 (2012) 64

Milestone for the field

- Confirms understanding of spin-filtering as a viable method to polarize a stored beam.
- Confirms complete control of the systematics of the experiment.

Mar. 2012 SPS Committee:

... many positive developments have occurred at the AD, leading to an updated program for the coming years We consider that PAX is now incompatible with this program.

Comments: I

$$P(t) = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}} = \tanh\left(\frac{t}{\tau_{1}}\right) \approx \widetilde{\sigma}_{1} \cdot f \cdot Q \cdot d_{t} \cdot t$$

- Maximum polarizing cross section
 - > small kinetic energy, where
 - the analyzing power is known

FILTEX

F. Rathmann. et al., PRL 71, 1379 (1993)

Comments: II

$$P(t) = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}} = \tanh\left(\frac{t}{\tau_{1}}\right) \approx \widetilde{\sigma}_{1} \cdot f \cdot Q \cdot d_{t} \cdot t$$

- 1. Maximum polarizing cross section
 - > small kinetic energy
- 2. Maximum revolution frequency
 - > large kinetic energy (compromise between 1. & 2. needed)
 - short accelerator

Comments: III

$$P(t) = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}} = \tanh\left(\frac{t}{\tau_{1}}\right) \approx \widetilde{\sigma}_{1} \cdot f \cdot Q \cdot d_{t} \cdot t$$

- 1. Maximum polarizing cross section
 - > small kinetic energy
- 2. Maximum revolution frequency
 - large kinetic energy
 - > short accelerator
- 3. Maximum target polarization and density
 - high dense polarized gas target (Atomic Beam Source)
 - > storage cell

Comments: IV

$$P(t) = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}} = \tanh\left(\frac{t}{\tau_{1}}\right) \approx \widetilde{\sigma}_{1} \cdot f \cdot Q \cdot d_{t} \cdot t$$

- 1. Maximum polarizing cross section
 - > small kinetic energy
- 2. Maximum revolution frequency
 - large kinetic energy
 - short accelerator
- 3. Maximum target polarization and density
 - high dense polarized gas target (Atomic Beam Source)
 - > storage cell
- Maximum filtering time
 - long beam lifetime (UHV, good beam preparation, etc.)

Experimental setup and commissioning

Atomic Beam Source

Low-\beta section

$$t \mu q_{acc}^2 \mu \frac{1}{b^2}$$

- Significant reduction of the machine acceptance due to storage cell (d = 9.6 mm, l = 400 mm)
- Solution: low-β section

Low- β section

$$t \mu q_{acc}^2 \mu \frac{1}{b^2}$$

- Significant reduction of the machine acceptance due to storage cell (d = 9.6 mm, l = 400 mm)
- Solution: low-β section

15

30

35

s(m)

25

Vacuum system: I

Vacuum system: II

Identification of optimal working point

- Search for optimal betatron tune by varying currents in quads \pm 3%
- Beam lifetime increases by decreasing tune spin: $\Delta Q_{split} = |Q_x Q_y|$
- Difference resonance not reachable due to coupling of betatron motion
- Improvement by sextupole or orbit corrections

R.Cappi, E. Métral, D. Möhl, in Proceedings of the 18th International Conference, HEACC 2001, Tsukuba, Japan, CERN-PS-2001-010-AE.

Identification of optimal working point

- Search for optimal betatron tune by varying currents in quads \pm 3%
- Beam lifetime increases by decreasing tune spin: $\Delta Q_{split} = |Q_x Q_y|$
- Difference resonance not reachable due to coupling of betatron motion
- Improvement by sextupole or orbit corrections

- 1. $\Delta Q_{split} = 0.014$ 2. $\Delta Q_{split} = 0.006$ (sextupoles) 3. $\Delta Q_{split} = 0.008$ (orbit correction)

R.Cappi, E. Métral, D. Möhl,

Proceedings of the 18th International Conference, HEACC 2001, Tsukuba, Japan, CERN-PS-2001-010-AE.

Space charge effects

- Measure beam lifetime as function of space charge
- Variation of beam emittance for constant intensity
- Tilt of e-beam with respect to p-beam changes cooling performance
- Beam lifetime increases with decreasing space charge
- Betatron amplitude-dependent detuning ("tune spread")

Maximal incoherent tune shift given by:

$$DQ_{x,y}^{inc} = -\frac{r_0 \cdot N}{\rho b_L^2 g_L^3} \cdot \frac{F_{x,y} G}{B_f} \cdot \frac{1}{e_{x,y} + \sqrt{e_x \cdot e_y}}$$

K. Schindl, Space Charge, CERN Accelerator School, Zeuthen, Germany, September 15-26, 305 (2003).

Future plans

Waiting for CERN ... (or construction of FAIR facility)
Longitudinal spin-filtering test at COSY

Superconducting 2.1 Tm at ANKE place Longitudinal polarization at PAX place

Longitudinal beam polarimeter in preparation

(→ G. Ciullo 24.10)

Summary

Status:

- Successfull spin filtering measruement at COSY on transverse polarized target.
- Excellent agreement with theoretical predictions for protons
- Development of a protocol for spin-filtering tests
- Eccellent performance for the COSY ring (precision machine)

Future plans at COSY

• Spin filtering with protons and a longitudinally polarized gas target at COSY at $T_p = 130$ MeV (\overrightarrow{pp} scattering)

Still pending:

Spin-filtering experiments at AD (or FAIR) (transv. and long. polarization)

Thank you!

Additional Slides

Expected Polarizations for pbar

Spin Filtering with Longitudinal Polarization

- Buildup of longitudinal beam polarization due to repeated interactionwith a longitudinally polarized hydrogen target
- T_p 45 130 MeV kinetic proton energy
- <u>Detector</u>: Measurement of longitudinal beam polarization using elastic scattering
 - o Measurement duringfilteringwith hydrogen targetpossible
 - o Spin correlationcoefficient (~ 0.5)
 - o Nobackground

$$\frac{dS}{dW} = \frac{dS_0}{dW}(1 + C_{zz}P_zQ_z)$$

Low- β section: II

Measurement of β -function

$$D_{x,y} = \frac{4p}{l} \left| \frac{DQ_{x,y}}{Dk} \right|$$

- Measure tune change as function of quadrupole strength
- PAX magnets are powered pairwise

Low- β section: II

Measurement of β -function

$$D_{x,y} = \frac{4p}{l} \left| \frac{DQ_{x,y}}{Dk} \right|$$

- Measure tune change as function of quadrupole strength
- PAX magnets are powered pairwise

	Measurement		Model calculation		
	PAX 1	PAX 2	PAX 1	PAX 2	center
β _× (m)	2.31±0.13	2.80±0.04	2.11	2.71	0.31
β _y (m)	12.41±1.01	3.31±0.05	12.99	2.74	0.46

Orbit Correction

- Corrections of deviations from ideal orbit
- Closed orbit correction scheme based on orbit response matrix (ORM)

$$u(s) = R_{s,i}^{u} \times J_{u}(s) \quad \text{with} \quad R_{s,i}^{u} = \sqrt{D_{u,i} \cdot D_{u,s}} \frac{\cos(\rho Q_{u} - j_{u,s \to i})}{2\sin(\rho Q_{u})}$$

• χ^2 minimization to determine correction angle kicks θ_u

