Double Helicity Asymmetries of Forward Neutral Pions from $\sqrt{s}=510 \mathrm{GeV}$ pp Collisions at STAR

Christopher Dilks

for the STAR Collaboration

Outline

- Current Status of Gluon Polarization
- Double Helicity Asymmetry - A_{LL}
- Forward EM Calorimetry at STAR
- Luminosity Detectors at STAR
- Relative Luminosity and $A_{L L}$ Systematics
- Π^{0} Event Selection
- Measurement of Forward $\pi^{0} \mathrm{~A}_{\mathrm{LL}}$

Gluon Polarization $\Delta g(x)$

Proton Spin Sum: $\quad S_{p}=\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q}+L_{g}$ - $\Delta \Sigma \sim 0.3$

- $L_{q}, L_{g} \sim$?
- $\Delta G-$ status shown

low-x poorly constrained; accessible via forward observables

de Florian, Sassot, Stratmann, Vogelsang 3 Phys. Rev. Lett. 113, 012001 (2014)

Accessing Δg by Measuring $A_{L L}$

Colliding proton helicities known for each bunch crossing (9.4 MHz at STAR)

$A_{L L}=\frac{1}{P_{a} P_{b}} \frac{\left(\sigma^{++}+\sigma^{--}\right)-\left(\sigma^{+-}+\sigma^{-+}\right)}{\left(\sigma^{++}+\sigma^{--}\right)+\left(\sigma^{+-}+\sigma^{-+}\right)} \propto \frac{\Delta f_{1} \Delta f_{2}}{f_{1} f_{2}}$
Beam Polarizations
(Measured by RHIC polarimetry group)

$$
f_{i}=\mathrm{PDF}
$$

Re-express cross-section: $\sigma^{ \pm \pm}=\frac{N^{ \pm \pm}}{L^{ \pm \pm}} \quad \Delta f_{i}=$ polarized PDF
Relative Luminosity: $R_{3}=\frac{L^{++}+L^{--}}{L^{+-}+L^{-+}} \rightarrow \begin{gathered}\text { Measured using }\end{gathered} \quad \begin{gathered}\text { STAR luminosity detectors }\end{gathered}$

$$
A_{L L}=\frac{1}{P_{a} P_{b}} \frac{\left(N^{++}+N^{--}\right)-R_{3} \cdot\left(N^{+-}+N^{-+}\right)}{\left(N^{++}+N^{--}\right)+R_{3} \cdot\left(N^{+-}+N^{-+}\right)}
$$

Forward EM Calorimetry at STAR

Central and Mid-rapidity Calorimetry \& Tracking

PRIMARY FOCUS:

FMS - Forward Meson Spectrometer

- Forward pseudorapdity: $2.5<\eta<4$
- 1,264 Lead-glass cells coupled to photomultiplier tubes
- Large ($5.8 \times 5.8 \mathrm{~cm}$) outer cells (blue)

- Small ($3.8 \times 3.8 \mathrm{~cm}$) inner cells (black) \qquad
- Observes $\boldsymbol{\pi}^{0} \rightarrow \mathbf{Y}+\mathrm{Y}$ as 2 cluster events
- Forward observables \rightarrow access to low-x gluons

Measuring Relative Luminosity at STAR

$$
R_{3}=\frac{L^{++}+L^{--}}{L^{+-}+L^{-+}}
$$

3 Luminosity Detectors at STAR:

- Beam Beam Counter (BBC) - not used in this analysis
- Vertex Position Detector (VPD)
- Zero Degree Calorimeter (ZDC)

They are "Scalers": for each bunch crossing, they count whether or not a "hit" was observed

- Scalers are placed symmetrically on both sides of the interaction point
- A hit on one side is called a "single count"
- A hit on both sides within a time window is called a "coincidence count"

VPD

$4.2<|n|<5.1$
5.7 m from Interaction Point Hits: mostly charged particles and photons from pion decays

ZDC

$6.5<|n|<7.5$
18 m from Interaction Point
Hits: mostly neutrons and some neutral kaons; photons only in $1^{\text {st }}$ module
(charged particles are swept away by magnets)

Relative Luminosity Measurements

2012 Relative Luminosity R_{3}

- Measured with VPD, averaging over both singles sides and coincidences
- Cross-checked with other STAR scalers (ZDC, singles, coincidences)

For each run ($\sim 30 \mathrm{~min}$.), $\mathrm{R} \sim 1 \pm 0.04$
Typical statistical uncertainty $\sim 4 \times 10^{-5}$

$$
R_{3}=\frac{L^{++}+L^{--}}{L^{+-}+L^{-+}}
$$

Relative Luminosity $\rightarrow \boldsymbol{\pi}^{0} A_{L L}$ Systematic

2012 Run ZDC A LL Distribution (relative lum. by VPD)

2013 Run ZDC A LL Distribution (relative lum. by VPD)

- Measured $A_{L L}$ in ZDC scaler system using VPD coincidences as a relative luminosity
\rightarrow Denoted as "Scaler A_{LL} "
- Distribution of this Scaler $A_{L L}$ is shown on the left $\rightarrow 1$ entry $=1$ STAR run (~30 min)
- Red Lines indicate Gaussian fit results, defined with fit parameters c, μ, and σ

Fit Function $f\left(\mathrm{~A}_{\mathrm{LL}}\right)$:
$f\left(A_{L L}\right)=c \cdot \exp \left[-\frac{1}{2}\left(\frac{A_{L L}-\mu}{\sigma}\right)^{2}\right]$

- In the 2013 Run, this Scaler $A_{L L}$ was correlated with spin pattern \rightarrow The two peaks are fit with two separate Gaussians

Relative Luminosity $\rightarrow \boldsymbol{\pi}^{0} A_{L L}$ Systematic

- Measurement of Scaler $A_{L L}+$ its uncertainty $=\pi^{0} A_{L L}$ shift systematic uncertainty
- "Shift" denotes a constant bias on A_{LL}
- Scaler $A_{L L}$ measurement is taken to be the overall mean of the distribution
- For Scaler $A_{L L}$ uncertainty, we use the fit parameter σ
\rightarrow For the 2013 run, the σ of the wider peak is used
- The overall $\pi^{0} A_{L L}$ systematic is computed as:

$$
\pi^{0} A_{L L} \text { Systematic = Scaler } A_{L L} " \sigma "+\mid \text { Scaler } A_{L L} \text { Mean } \mid
$$

$A_{\text {LL }}$ Shift Systematic Uncertainty

2012 Run

2013 Run
2.8×10^{-4}
6.2×10^{-4}

Combining 2012 and 2013 Runs' Systematics:

- For each $\mathrm{p}_{\mathrm{T}}\left(\right.$ or $\left.\mathrm{E}_{\mathrm{\gamma}}\right)$ bin: weighted average of 2012 \& 2013 systematics based on π^{0} statistics

π^{0} Event Selection

- Full azimuth: $-\pi \leq \varphi<\pi$
- FMS Psuedorapidity: $2.5 \leq \eta<4$
- Transverse Momentum Ranges:
- 2012 Run: $\left.2.5 \leq \mathbf{p}_{\boldsymbol{T}}<\mathbf{1 0} \mathbf{G e V} / \mathbf{c}\right\}$ Different low p_{T} cutoff to account
- 2013 Run: $\left.2.0 \leq \mathbf{p}_{\mathrm{T}}<10 \mathrm{GeV} / \mathbf{c}\right\}$ for trigger threshold adjustment
- Di-photon Energy Range: $30 \leq \mathrm{E}_{\mathrm{yv}}<100 \mathrm{GeV}$
- Energy Sharing: $\mathbf{Z}=\left|\mathrm{E}_{1}-\mathrm{E}_{2}\right| / \mathrm{E}_{\mathrm{yv}}<0.8$
- Mass Cut: Dependent on $E_{v y}$ (see invariant mass slide)
- 2-photon Isolation Cone: $\mathbf{3 5} \mathrm{mr}$ and 100 mr analyzed
- Isolation cone versus inclusive \rightarrow See next slide

Motivating π^{0} Isolation Cones

$\underline{A}_{\underline{N}}$ vs. Energy, averaged over pseudo-rapidity.
Compare 3 selection criterion based on photon energy outside the cone (all with 35 mR cone and no soft E cut)

- More isolated $\pi^{0} s$ have higher transverse single spin asymmetry A_{N}
- We applied similar isolation cuts for $\pi^{0} A_{L L}$, motivated by the dependence of A_{N} on π^{0} isolation \rightarrow Goal: verify $A_{L L}$ is NOT dependent on π^{0} isolation; inclusive π^{0} to be explored after Spin2014
\rightarrow See Yuxi Pan's Spin2014 presentation for more on "isolated" vs. "inclusive" A_{N}

Invariant Mass for 2-photon Events

- Trigger thresholds adjusted in 2013 run to increase sensitivity to $\pi^{0} \mathrm{~s}$ in $2<\mathrm{p}_{\mathrm{T}}<3 \mathrm{GeV} / \mathrm{c}$ region
- Π^{0} mass peak resolution decreases as Energy ($E_{\gamma y}$) increases
- Mass peak smears toward higher mass as $E_{\gamma y}$ increases
$\rightarrow \mathrm{E}_{\mathrm{yy}}$-dependent mass cut for π^{0} candidates (FWHM of peak)

Red Line - mass peak Blue \& Green lines set at FWHM
$m_{\pi^{0}} \approx 135 \mathrm{MeV} / \mathrm{c}^{2}$

Forward $\pi^{0} A_{L L}$ Measurement - p_{T}-Dependence

π^{0} Double Helicity Asymmetry $A_{L L}$ vs. p_{T}

statistical uncertainty
bin RMS
systematic uncertainty

35 mr Constant Fit Result: $A_{L L}=-2.5 \times 10^{-4} \pm 6.5 \times 10^{-4}$

$$
\mathrm{X}^{2} / \mathrm{NDF}=7.8 / 5
$$

100 mr Constant Fit Result: $\mathrm{A}_{\mathrm{LL}}=-3.3 \times 10^{-4} \pm 8.4 \times 10^{-4}$

$$
\mathrm{X}^{2} / \mathrm{NDF}=12.5 / 5
$$

* 100 mr points are offset by $\mathrm{p}_{\mathrm{T}}+0.1 \mathrm{GeV} / \mathrm{c}$ for visibility

Forward $\pi^{0} \mathbf{A}_{L L}$ Measurement $-E_{y v}$-Dependence

π^{0} Double Helicity Asymmetry A_{LL} vs. $\mathrm{E}_{\gamma \gamma}$

statistical uncertainty
bin RMS
systematic uncertainty

35 mr Constant Fit Result: $\mathrm{A}_{\mathrm{LL}}=-2.5 \times 10^{-4} \pm 6.5 \times 10^{-4}$

$$
\mathrm{X}^{2} / \mathrm{NDF}=2.7 / 5
$$

100 mr Constant Fit Result: $\mathrm{A}_{\mathrm{LL}}=-3.3 \times 10^{-4} \pm 8.4 \times 10^{-4}$

$$
\mathrm{X}^{2} / \mathrm{NDF}=2.5 / 5
$$

* 100 mr points are offset by $\mathrm{E}_{\mathrm{yv}}+1 \mathrm{GeV}$ for visibility
-Forward (2.5 $\leq \eta<4$) $\pi^{0} A_{L L}$ measurement consistent with zero - Independence of $A_{L L}$ on π^{0} isolation verified (cf. large dependence of A_{N} on π^{0} isolation)
- Other systematic uncertainties are still under consideration - Trigger Bias - likely sub-dominant
\checkmark Transverse spin component - likely negligible for $A_{L L}$
- Inclusive analysis coming soon!

backup

Outlook: Accessing low-x $\Delta g(x)$ via Di-jets

- Forward hadrons from hard q, soft g processes
- Dijet Kinematics \rightarrow access to gluon $x \leq 10^{-3}$
- Lowest-x processes accessible in future FCS (Forward Calorimetry System; $2.8<\eta<3.7$)

$x_{1}=\frac{p_{T}}{\sqrt{s}}\left(e^{\eta_{3}}+e^{\eta_{4}}\right)$
$x_{2}=\frac{p_{T}}{\sqrt{s}}\left(e^{-\eta_{3}}+e^{-\eta_{4}}\right) \int$ and x_{2} equations)

(leading-order x_{1}
$\sqrt{s}=500 \mathrm{GeV}$

Surrow - aгXiv: 1407.4176

Energy-Dependent π_{0} Mass Cuts - 2012 Run

Vertical Lines Legend
M low bound
M max bin
M high bound

Bounds are set at the full width at half max of the Π^{0} mass peak for each $10 \mathrm{GeV}_{\mathrm{Vv}}$ bin

Energy-Dependent π_{0} Mass Cuts - 2013 Run

$M_{r \gamma}$ distribution for $\mathrm{E}_{\gamma \gamma}[[50,60) \mathrm{GeV}$
$M_{\gamma \gamma}$ distribution for $E_{\gamma \gamma} \in[60,70) \mathrm{GeV}$

Vertical Lines Legend
M low bound
M max bin
M high bound

Bounds are set at the full width at half max of the π^{0} mass peak for each $10 \mathrm{GeV} \mathrm{E}_{\mathrm{yv}}$ bin

$\pi^{0} p_{T}$ Distributions

For above plots:

Black vertical lines are p_{T} bin boundaries; red lines indicate p_{T} bin means \& RMSs

Trigger thresholds adjusted in 2013 to increase sensitivity in $2<\mathrm{p}_{\mathrm{T}}<3 \mathrm{GeV} / \mathrm{c}$ region
$2.0 \leq \mathrm{p}_{\mathrm{T}}<10 \mathrm{GeV} / \mathrm{c}$

$\pi^{0} \mathrm{E}_{\mathrm{yv}}$ Distributions

$\pi^{0} E_{v y}$ distribution for 2012 run

For above plots:
Black vertical lines are $E_{v y}$ bin boundaries; red lines indicate $E_{v y}$ bin means \& RMSs

2012 and 2013 Run Cut: $30 \leq E_{v V}<100 \mathrm{GeV}$

Forward $\pi^{0} A_{L L}$ Measurement for 2012 vs. 2013

π^{0} Double Helicity Asymmetry $A_{L L}$ vs. $p_{T} 2012$ Run

π^{0} Double Helicity Asymmetry $A_{L L}$ vs. $p_{T} 2013$ Run

p_{T} Dependence

$|\mid$
statistical uncertainty
bin RMS

systematic uncertainty

Forward $\boldsymbol{\pi}^{0} \mathrm{~A}_{\mathrm{LL}}$ Measurement for 2012 vs. 2013
π^{0} Double Helicity Asymmetry $A_{L L}$ vs. $\mathrm{E}_{\gamma \gamma} 2012$ Run

E_{yv} Dependence

$1 \mid$
statistical uncertainty
bin RMS

systematic uncertainty

Combining Data to Measure A_{LL}

- STAR takes data in ~30 minute periods, called runs
- Combine runs via maximum likelihood method (MLM)

MLM value: $\bar{A}_{L L}=\frac{\sum_{i} P_{a}^{(i)} P_{b}^{(i)}\left[N_{++}^{(i)}+N_{--}^{(i)}-R_{3}^{(i)}\left(N_{+-}^{(i)}+N_{-+}^{(i)}\right)\right]}{\sum_{i}\left(P_{a}^{(i)} P_{b}^{(i)}\right)^{2}\left[N_{++}^{(i)}+N_{--}^{(i)}+R_{3}^{(i)}\left(N_{+-}^{(i)}+N_{-+}^{(i)}\right)\right]}$
(sums over runs)
Statistical Uncertainty: $\delta_{A_{L L}}^{s t a t} \approx \frac{1}{\left\langle P_{a}\right\rangle\left\langle P_{b}\right\rangle \sqrt{N_{\text {tot }}}}$

Need 3 coincident measurements:
h-dependent yields \leftarrow calorimetry (viz. FMS)
Relative Luminosity \leftarrow scaler detectors (BBC, ZDC, VPD)
Beam Polarizations \leftarrow RHIC polarimetry ($\sim 55 \%+/-5 \%$)

