Double Helicity Asymmetries of Forward Neutral Pions from $\sqrt{s} = 510$ GeV pp Collisions at STAR

Christopher Dilks for the STAR Collaboration

Spin2014 The 21st International Symposium on Spin Physics Oct. 20-24, 2014 Peking University, Beijing, China

Outline

- Current Status of Gluon Polarization
- Double Helicity Asymmetry A_{LL}
- Forward EM Calorimetry at STAR
- Luminosity Detectors at STAR
- Relative Luminosity and A_{LL} Systematics
- π⁰ Event Selection
- Measurement of Forward $\pi^0 A_{LL}$

Gluon Polarization $\Delta g(x)$

accessible via forward observables

Phys. Rev. Lett. 113, 012001 (2014)

Accessing Δg by Measuring A_{LL}

/

Colliding proton helicities known for each bunch crossing (9.4 MHz at STAR)

Forward EM Calorimetry at STAR

Measuring Relative Luminosity at STAR

3 Luminosity Detectors at STAR:

- Beam Beam Counter (BBC) not used in this analysis
- Vertex Position Detector (VPD)
- Zero Degree Calorimeter (ZDC)

They are "Scalers": for each bunch crossing, they count whether or not a "hit" was observed

- Scalers are placed symmetrically on both sides of the interaction point
- A hit on one side is called a "single count"
- A hit on both sides within a time window is called a "coincidence count"

<u>VPD</u>

4.2 < |η| < 5.1
5.7 m from Interaction Point
Hits: mostly charged particles and photons from pion decays

iys

ZDC

6.5 < |η| < 7.5
18 m from Interaction Point
Hits: mostly neutrons and some neutral kaons; photons only in 1st module
(charged particles are swept away by magnets)

 $R_3 = \frac{L^{++} + L^{--}}{L^{+-} + L^{-+}}$

Relative Luminosity Measurements

- Measured with VPD, averaging over both singles sides and coincidences
- Cross-checked with other STAR scalers (ZDC, singles, coincidences) For each run (~30 min.), R ~ 1 ± 0.04 Typical statistical uncertainty ~ 4 x 10⁻⁵ $R_3 = \frac{L^{++} + L^{-1}}{L^{+-} + L^{-1}}$

1

Relative Luminosity $\rightarrow \pi^0 A_{_{LL}}$ Systematic

Relative Luminosity $\rightarrow \pi^0 A_{_{LL}}$ Systematic

- Measurement of Scaler A_{LL} + its uncertainty = $\pi^0 A_{LL}$ shift systematic uncertainty
 - "Shift" denotes a constant bias on A_{LL}
 - Scaler A₁₁ measurement is taken to be the overall mean of the distribution
 - For Scaler $A_{_{LL}}$ uncertainty, we use the fit parameter σ
 - \rightarrow For the 2013 run, the σ of the wider peak is used
 - The overall $\pi^0 A_{LL}$ systematic is computed as:

$$\pi^{0} A_{LL}$$
 Systematic = Scaler A_{LL} " σ " + | Scaler A_{LL} Mean |

	A _{LL} Shift Systematic Uncertainty
2012 Run	2.8 x 10⁻⁴
2013 Run	6.2 x 10 ⁻⁴

Combining 2012 and 2013 Runs' Systematics:

• For each p_{τ} (or $E_{\gamma\gamma}$) bin: weighted average of 2012 & 2013 systematics based on π^0 statistics

π⁰ Event Selection

- Full azimuth: $-\pi \leq \phi < \pi$
- FMS Psuedorapidity: $2.5 \le \eta \le 4$
- Transverse Momentum Ranges:
 - 2012 Run: 2.5 ≤ p_T < 10 GeV/c [¬]
 - 2013 Run: 2.0 ≤ p_T < 10 GeV/c </p>
- Different low p_{T} cutoff to account for trigger threshold adjustment
- Di-photon Energy Range: 30 ≤ E_{vv} < 100 GeV
- Energy Sharing: $\mathbf{Z} = |\mathbf{E}_1 \mathbf{E}_2| / \mathbf{E}_{yy} < 0.8$
- Mass Cut: Dependent on E_{vv} (see invariant mass slide)
- 2-photon Isolation Cone: 35 mr and 100 mr analyzed
 - \bullet Isolation cone versus inclusive \rightarrow See next slide

Motivating π⁰ Isolation Cones

<u>**A_N vs. Energy,**</u> averaged over pseudo-rapidity.</u>

Compare 3 selection criterion based on photon energy outside the cone (all with 35mR cone and no soft E cut)

• More isolated π^{0} s have higher transverse single spin asymmetry A_{N}

- We applied similar isolation cuts for $\pi^0 A_{LL}$, motivated by the dependence of A_N on π^0 isolation
 - Goal: verify A_{LL} is *NOT* dependent on π^0 isolation; inclusive π^0 to be explored after Spin2014
 - See Yuxi Pan's Spin2014 presentation for more on "isolated" vs. "inclusive" A_N

Figures from Heppelmann, DIS 2013 [Proceedings: PoS (DIS 2013) 240]

Invariant Mass for 2-photon Events

Forward $\pi^{0} A_{II}$ Measurement – p_{T} -Dependence

35 mr Constant Fit Result: $A_{LL} = -2.5 \times 10^{-4} \pm 6.5 \times 10^{-4}$ $\chi^2 / NDF = 7.8 / 5$

100 mr Constant Fit Result: $A_{LL} = -3.3 \times 10^{-4} \pm 8.4 \times 10^{-4}$ $\chi^2 / NDF = 12.5 / 5$

* 100 mr points are offset by p_{τ} + 0.1 GeV/c for visibility

13

Forward π⁰ A_{LL} Measurement – E_{vv}-Dependence

STAR

 π^0 Double Helicity Asymmetry A₁₁ vs. E_{$\gamma\gamma$}

35 mr Constant Fit Result: $A_{LL} = -2.5 \times 10^{-4} \pm 6.5 \times 10^{-4}$ $\chi^2 / NDF = 2.7 / 5$

100 mr Constant Fit Result: $A_{LL} = -3.3 \times 10^{-4} \pm 8.4 \times 10^{-4}$ $\chi^2 / NDF = 2.5 / 5$

* 100 mr points are offset by E_{vv} + 1 GeV for visibility

14

Conclusion

► Forward (2.5 ≤ η < 4) $\pi^0 A_{LL}$ measurement consistent with zero Independence of A_{LL} on π^0 isolation verified (cf. large dependence of A_{N} on π^0 isolation)

- Other systematic uncertainties are still under consideration Trigger Bias – likely sub-dominant
 - \odot Transverse spin component likely negligible for A₁₁

Inclusive analysis coming soon!

backup

Outlook: Accessing low-x $\Delta g(x)$ via Di-jets

Energy-Dependent π_0 Mass Cuts – 2012 Run

0.2 0.3

0.1

0.4

0.5 0.6 0.7

0.8 0.9

Energy-Dependent π_0 Mass Cuts – 2013 Run

0.2

0.1

0.3

0.4

0.5

0.6

0.7

0.9

0.8

$\pi^0 p_{T}$ Distributions

For above plots: Black vertical lines are p_T bin boundaries; red lines indicate p_T bin means & RMSs

2012 Run Cut: $2.5 \le p_{T} < 10 \text{ GeV/c}$

Trigger thresholds adjusted in 2013 to increase sensitivity in $2 < p_T < 3 \text{ GeV/c}$ region

2013 Run Cut: $2.0 \le p_{T} < 10 \text{ GeV/c}$

$\pi^0 E_{_{\gamma\gamma}}$ Distributions

For above plots: Black vertical lines are $E_{\gamma\gamma}$ bin boundaries; red lines indicate $E_{\gamma\gamma}$ bin means & RMSs

> **2012 and 2013 Run Cut:** $30 \le E_{yy} < 100 \text{ GeV}$

Forward $\pi^0 A_{LL}$ Measurement for 2012 vs. 2013

Forward $\pi^0 A_{LL}$ Measurement for 2012 vs. 2013

Combining Data to Measure A_{LL}

- STAR takes data in ~30 minute periods, called runs
 - Combine runs via maximum likelihood method (MLM)

MLM value:
$$\bar{A}_{LL} = \frac{\sum_{i} P_{a}^{(i)} P_{b}^{(i)} \left[N_{++}^{(i)} + N_{--}^{(i)} - R_{3}^{(i)} \left(N_{+-}^{(i)} + N_{-+}^{(i)} \right) \right]}{\sum_{i} \left(P_{a}^{(i)} P_{b}^{(i)} \right)^{2} \left[N_{++}^{(i)} + N_{--}^{(i)} + R_{3}^{(i)} \left(N_{+-}^{(i)} + N_{-+}^{(i)} \right) \right]}$$
(sums over runs)

Statistical Uncertainty:
$$\delta^{stat}_{\bar{A}_{LL}} \approx \frac{1}{\langle P_a \rangle \langle P_b \rangle \sqrt{N_{tot}}}$$

Need 3 coincident measurements: h-dependent yields ← calorimetry (viz. FMS) Relative Luminosity ← scaler detectors (BBC, ZDC, VPD) Beam Polarizations ← RHIC polarimetry (~55% +/- 5%)