The 21st International Symposium on Spin Physics Peking University Beijing, China Oct. 19 2014 – Oct. 24 2014

Gluon Polarization in Longitudinally Polarized pp Collisions at STAR

Zilong Chang For STAR Collaboration

Outline

Introduction

□ Inclusive jet measurements

 $\Box \pi^0$ measurements

Di-jet measurements

Conclusion

How Gluons Contribute to Proton Spin

Proton Spin:

$$S_z = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

- $\Delta\Sigma$: ~0.3 measured by DIS
- ΔG : poorly determined by DIS and SIDIS
- L_q , L_g : undetermined yet.
- Blümlein & Böttcher, NPB 841, 205 (2010) with fit to DIS data only

Leader et al, PRD 82, 114018 (2010) with fit to DIS and SIDIS data

- LSS'10p: $\Delta G = 0.32 \pm 0.19$
- LSS'10: $\Delta G = -0.34 \pm 0.46$

SPIN 2014 -- Z. Chang 10/22/2014

Exploring Gluon Contribution at RHIC

0.8

RHIC Facilities

- Spin varies from rf bucket to rf bucket (9.4 MHz)
- Spin pattern changes from fill to fill
- Spin rotators provide choice of spin orientation
- Billions of spin reversals during a fill with little depolarization

- High precision tracking with Time Projection Chamber
- High energy resolution with Barrel Electro-Magnetic Calorimeter, Endcap Electro-Magnetic Calorimeter and Forward Meson Spectrometer
- Additional detectors (Beam-Beam Counter, Vertex Position Detector, and Zero Degree Calorimeter) for relative luminosity and local polarimetry

STAR Experiment Unique Access to Gluon Polarization

Longitudinally polarized pp collisions at 200 GeV and 510 GeV allow both cross section and double spin asymmetry A_{LL} measurements on:

Inclusive Jet

x down to ~ 0.05 for jets in the mid-rapidity at 200 GeV

* Inclusive π^0

x down to ~ 0.02 for forward π^0 0.8 < $|\eta|$ < 2.0 at 200 GeV

✤ Di-jet

Correlation unfolds x₁, x₂ at the leading order

Complementary to each other to achieve large x_g coverage of gluon polarization

□Inclusive jet measurements

 $\Box \pi^0$ measurements

Di-jet measurements

Jet Reconstruction at STAR

Detector

Particle

Parton

 For 2006 200 GeV data: Mid-point cone algorithm

Adapted from Tevatron II – hep-ex/0005012

- a. Seed energy = 0.5 GeV
- b. Cone radius R = 0.7 in η - ϕ space
- c. Split/merge fraction f = 0.5
- For 2009 200 GeV data Anti-k_T algorithm Cacciari, Salam, and Soyez, JHEP 0804, 063

• Cone radius **R = 0.6**

- For 2012 510 GeV data
 Anti-k_T algorithm
 - Cone radius **R = 0.5**

Use Pythia + Geant to quantify detector response

Sjostrand, Mrenna, and Skands, JHEP 05, 026

Inclusive Jet Cross Section from 2006 Data

- Good agreement between data and simulation
- Good agreement with NLO pQCD calculation after hadronization and underlying event correction is applied
- Jet production is well understood at RHIC energies

Inclusive Jet A_{LL} from 2006 Data

PRD 86, 032006

• STAR inclusive jet A_{LL} from 2006 excluded those scenarios that had a large gluon polarization within the accessible x region

DSSV – First Global Analysis with Polarized Jets

de Florian et al., PRL 101, 072001

- The first global NLO analysis to include inclusive DIS, SIDIS, and RHIC pp data on an equal footing
- Found relatively small gluon polarization within the region 0.05 < x < 0.2 that was sampled by the 2006 data

Improvements for 2009

- 2009 jet patch trigger upgrades
 - $\circ~$ Overlapping jet patches and lower E_T threshold improve efficiency and reduce trigger bias
 - Net increase of 37% in jet acceptance
 - Remove beam-beam counter trigger requirement
 - Trigger more efficiently at high jet p_T
 - Measure non-collision background
- Increased trigger rate and reduced thresholds enabled by DAQ1000
- Sampled ~ 4 times the figure-of-merit relative to 2006
- Nearly 20-fold increase in event statistics
- Improvements in jet reconstruction
 - Subtract 100% of track momentum from struck tower energy (2009) instead of MIP (2006)
 - Overall jet energy resolution improved from 23% to 18%
 - \circ Switch from mid-point cone to anti-k_T

Inclusive Jet A_{LL} from 2009 Data

- 2009 STAR inclusive jet A_{LL} measurements are a factor of 3 (high- p_T) to >4 (low- p_T) more precise than 2006
- A_{LL} falls in the middle among several recent polarized PDF fit predictions

Inclusive Jet A_{LL} from 2009 Data

A_{LL} is somewhat larger than predictions from the **2008 DSSV** fit

 \circ Points toward positive Δg in the accessible x region

Two New Polarized Distribution Fits

NNPDF, NPB 887.276

DSSV, PRL 113, 012001

- Both DSSV and NNPDF have released new polarized PDF fits
- Both find 2009 STAR jet A_{LL} results provide significantly tighter constraints on gluon polarization than previous measurements
- Both find evidence for positive gluon polarization in the region x > 0.05
 - DSSV: $0.19^{+0.06}_{-0.05}$
 - NNPDF: 0.23 ± 0.07

at 90% C.L. for x > 0.05

for 0.05 < x < 0.5

SPIN 2014 -- Z. Chang 10/22/2014

2012 pp 510 GeV Run

- 510 GeV longitudinally polarized pp collisions
 - average polarization 53%
 - \circ analysis of data of integrated luminosity 50 pb^{-1}
- 510 GeV provides sensitivity to smaller x_g
- Same jet reconstruction method except using smaller cone radius R = 0.5
 - Reduced pile-up effects
 - Better matching probability from detector jet to parton jet
- |η| < 0.9
 - Narrower vertex distribution in 2012
- Non-collision background and transverse residual double spin asymmetry found to make negligible contributions

2012 Inclusive Jet A_{LL}

- Trigger and reconstruction bias dominates the systematic uncertainties
- Relative luminosity systematic uncertainty is 4 ×10⁻⁴
- Results agree well with latest NLO predictions

2012 Inclusive Jet A_{LL} with 2009 Data

- Higher collision energy
 extends x_T to lower region
- 510 GeV results agree well with 200 GeV data in the overlapping region

Increased Precision at 200 GeV Coming Soon

- STAR also anticipates significant future reductions in the uncertainties for 200 GeV collisions relative to the 2009 results
 - Hope to record **triple** the existing 200 GeV data during **the 2015 RHIC run**

□ Inclusive jet measurements

$\Box \pi^0$ measurements

Di-jet measurements

π^0 Measurements at STAR

Counts per 10 MeV/c²

PRD.89.012001

- Studied π⁰ production at 0.8 < η < 2 in 200 GeV pp collisions from 2006 data
- Measure γ from π⁰ decay in electromagnetic calorimeter

• STAR has measured the inclusive π^0 cross section over a wide pseudo-rapidity range

Inclusive π^0 Double Spin Asymmetry A_{LL}

PRD.89.012001

• Needs greater precision to constrain NLO fit

Inclusive π^0 Double Spin Asymmetry A_{LL}

PRD.89.012001 \succ

□ Inclusive jet measurements

 $\Box \pi^0$ measurements

Di-jet measurements

Di-jet Measurements at STAR

- Di-jets permit event-by-event calculations of x₁ and x₂ at leading order
- Use the same technique to reconstruct di-jets as the inclusive jets

Di-jet Cross Section at 200 GeV and 500 GeV

- Di-jet cross section is well-described by NLO pQCD with corrections for hadronization and underlying event
- Will have A_{LL} for 2009 di-jets at 200 GeV soon
- Also analyzing A_{LL} for di-jets at 510 GeV using data from 2012 and 2013

Di-jets in Further Future

- STAR is planning to install a Forward Calorimeter System (FCS) in ~2020
- This will enable di-jet measurements with one or both jets in the forward region (2.8 < η < 3.7)
- FCS will provide information about gluon polarization at
 - a) $x \sim 5 \times 10^{-3}$ with FCS-EEMC dijets
 - b) $x \le 10^{-3}$ with FCS-FCS di-jets

- Vs = 500 GeV
- \circ Cone Algorithm, R = 0.7
- \circ E_{T,3} > 5 GeV, E_{T,4} > 8GeV

- Assumed integrated luminosity: 1000 pb⁻¹
- Assumed polarization: 60%

SPIN 2014 -- Z. Chang 10/22/2014

Di-jets in Further Future

SPIN 2014 -- Z. Chang 10/22/2014

Conclusion

- STAR inclusive jet, π^0 , and di-jet A_{LL} measurements are unique to explore gluon contribution to proton spin
- STAR 2009 inclusive jet A_{LL} results provide the first experimental evidence for positive gluon polarization in the RHIC range
- STAR 2012 510 GeV inclusive jet A_{LL} results extend measurements at lower x_g and agree well with STAR 2009 200 GeV data in the overlapping x_T range
- More results coming up in the near future
 - First measurements:
 - Di-jet A_{LL} at 200 GeV (2009)
 - Di-jet A_{LL} at 510 GeV (2012 and 2013)
 - Inclusive π⁰ A_{LL} at 510 GeV (2012)
 - Improved precision for:
 - Inclusive jet A_{LL} at 200 GeV (2015)
- In the further future, STAR will use forward di-jets to explore gluon polarization at very low x_g (~10⁻³)

