

Azimuthal Single-Spin Asymmetries of Charged Pions in Jets in √s = 200 GeV p[↑]p Collisions at STAR

J. Kevin Adkins, University of Kentucky For the STAR Collaboration SPIN 2014 – Beijing, China October 24, 2014

- Single-spin asymmetries in hadronic collisions may help answer these questions
 - What is the size of the factorization breaking in the x region where we overlap with SIDIS?
 - How does transversity behave at high x?
 - What can we learn about the dynamics of proton-proton scattering, given that the above yields surprising results?

Single Spin p¹p Collisions

- φ_s is defined as the angle between proton spin and reaction plane
- j_T defines particle transverse momentum in jet
- φ_H defines angle between jet particle transverse momentum and reaction plane
- $\phi_{C} = \phi_{S} \phi_{H}$ (Collins Angle)

Single-Spin Asymmetries (SSA)

- There are multiple contributions to transverse singlespin asymmetries in the TMD framework
- STAR is sensitive to several modulations

Terms in Numerator of TMD SSA for qq scattering	English Names	Modulate
$\Delta^N f_{a/A\uparrow} ullet f_{b/B} ullet D_{\pi/q}$	Sivers•PDF•FF	$\sin(\varphi_{\scriptscriptstyle S_A})$
$h_1^a \bullet \Delta^{\!\! N} f_{b \uparrow / B} \bullet D_{\pi/q}$	Transversity•Boer-Mulders•FF	$\sin(arphi_{S_A})$
$h_{1T}^{\perp a}ullet \Delta^{\!\!N} f_{b \!\uparrow/B}ullet D_{\pi/q}$	Pretzelocity•Boer-Mulders•FF	$\sin(\varphi_{S_A})$
$h_1^a ullet f_{b/B} ullet \Delta D_{\pi/q \uparrow}$	Transversity•PDF •Collins	$\sin(\varphi_{S_A}-\varphi_{\pi})$
$\Delta f^{N}_{a/A\uparrow}ullet\Delta^{\!$	Sivers•Boer-Mulders•Collins	$\sin(\varphi_{S_A}-\varphi_{\pi})$
$h_{1T}^{\perp a} ullet f_{b/B} ullet \Delta D_{\pi/q \uparrow}$	Pretzelocity•PDF•Collins	$\sin(\varphi_{S_A} + \varphi_{\pi})$
$\Delta f^N_{a/A\uparrow} ullet \Delta^N {f_b}_{\uparrow/B} ullet \Delta D_{\pi/q\uparrow}$	Sivers•Boer-Mulders•Collins	$\sin(\varphi_{S_A} + \varphi_{\pi})$

Phys. Rev. D 83 034021 (2011)

Single-Spin Asymmetries (SSA)

- There are multiple contributions to transverse singlespin asymmetries in the TMD framework
- STAR is sensitive to several modulations
- This talk:

Knowledge of Transversity

- Distribution is chiral odd, accessibility limited in inclusive lepton scattering
- Transversity much less constrained than it's helicity counterpart

STAR Kinematic Coverage

Previous STAR Results and Theory

- Vs = 500 GeV asymmetries consistent with zero
- Non-zero Collins asymmetries predicted at midrapidity for 200 GeV proton collisions
- Hints of significant statistical differences in asymmetries for the two charges found in previous 2006 Collins measurement at STAR
 - Systematic errors are very large

0.1

0.05

^_ ∲_

<sin(∳₅.

2

-0.05

0

π⁺Asymmetry

 $\land \pi^{-}$ Asymmetry

systematic uncertainties

0.1

+ p \rightarrow jet + π^{\pm} + X at \sqrt{s} = 500 GeV

STAR Preliminary

0.6

8

0.1

Relativistic Heavy Ion Collider

Solenoidal Tracker At RHIC

2012 Data and Cuts

- 20 pb⁻¹ transversely polarized proton collisions at $\sqrt{s} = 200 \text{ GeV}$
 - Factor of 10 larger dataset than in 2006
- Average event weighted polarization: 63%
 - Increase from 58% in 2006 result
- Anti- k_{T} (R = 0.6) jet reconstruction
- Jet $p_T > 10 \text{ GeV/c} (x_T > 0.1)$ reduces gluon contamination
- |η_{jet}| < 1

Systematic Uncertainties

- Use PYTHIA+GEANT to simulate STAR response to QCD processes
 - Embed detector response into zero-bias data
- Correct z, p_T, and j_T to particle level
- Simulation used to estimate systematic errors
 - Pion mis-identification
 - ϕ_c reconstruction errors
 - Trigger bias
 - Other transverse spin dependent modulations of the cross section

Identifying Charged Pions

- Pions identified from TPC track dE/dx
- Use $-1 < n_{\sigma}(\pi) < 2.5$ cut to identify pions in jets

$$n_{\sigma}(\pi) = \frac{1}{\sigma_{\exp}} \ln \left(\frac{dE/dx_{obs}}{dE/dx_{\pi,calc}} \right)$$

- Kaons, protons, and electrons contaminate the pion sample
- This contamination is p_T independent and contributes less than 3% to the overall systematic uncertainty

$\phi_{\rm c}$ Reconstruction Bias

- Detector resolution and incorrect reconstruction of ϕ_c will decrease measured asymmetry
- Seed simulation with an asymmetry weight extracted from data
- Repeat analysis at detector and particle levels of simulation, and extract asymmetry
- Relative error gives estimate of φ_c resolution and reconstruction errors

Trigger Bias

- Trigger used to collect this data is biased towards quark jets
- Increased quark contributions will enhance measured asymmetry
- Contributes 5% to overall systematic uncertainty

A_{UT} vs. j_T for $x_F > 0$

A_{UT} vs. j_T for $x_F < 0$

A_{UT} vs. z for $x_F > 0$

A_{UT} vs. z for $x_F < 0$

A_{UT} vs. p_T for $x_F > 0$

A_{UT} vs. p_T for $x_F < 0$

• These results are the first statistically significant non-zero Collins asymmetries measured in hadronic collisions

- Upwards of 6σ , with very clear charge separation

- These results are the first statistically significant non-zero Collins asymmetries measured in hadronic collisions
 - Upwards of 6σ , with very clear charge separation
- The Collins asymmetry is a unique channel to access transversity
 - Jet asymmetries in p+p collisions offer the opportunity to test the factorization of TMD framework in hadronic collisions

- These results are the first statistically significant non-zero Collins asymmetries measured in hadronic collisions
 - Upwards of 6σ , with very clear charge separation
- The Collins asymmetry is a unique channel to access transversity
 - Jet asymmetries in p+p collisions offer the opportunity to test the factorization of TMD framework in hadronic collisions
- These measurements coupled with the Collins measurements at 500 GeV and interference fragmentation function (IFF) measurements at both 200 and 500 GeV will provide insight into the Q² evolution and universality of TMD functions
 - Drachenberg, James. "Constraining Transversity and Nucleon Transverse-polarization Structure Through Polarized-proton Collisions at STAR", PANIC 2014
 - Mike Skoby's 500 GeV IFF talk earlier
 - 2006 200 GeV IFF results (2012 IFF coming soon!)

- These results are the first statistically significant non-zero Collins asymmetries measured in hadronic collisions
 - Upwards of 6σ , with very clear charge separation
- The Collins asymmetry is a unique channel to access transversity
 - Jet asymmetries in p+p collisions offer the opportunity to test the factorization of TMD framework in hadronic collisions
- These measurements coupled with the Collins measurements at 500 GeV and interference fragmentation function (IFF) measurements at both 200 and 500 GeV will provide insight into the Q² evolution and universality of TMD functions
 - Drachenberg, James. "Constraining Transversity and Nucleon Transverse-polarization Structure Through Polarized-proton Collisions at STAR", PANIC 2014
 - Mike Skoby's 500 GeV IFF talk earlier
 - 2006 200 GeV IFF results (2012 IFF coming soon!)
- During upcoming 2015 RHIC run, STAR expects to record twice the 2012 data set, allowing for more detailed multi-dimensional study of the Collins effect

Backup

Flavor Matching Fractions

