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potential for running a Tokamak with polarized fuel

e fusion fuels: D+ t=> a+n; D+3He= a+p

©  both dominated by J=3/2 resonance just above threshold
o  jon femperatures < 100 KeV = s-waves dominate
o D (s=1) and t (s=}2) preferentially fuse when spins are aligned

® polarized fuels: up to 507% enhancement in the cross section
< obvious benefits: boost to “ignition”; increased power, Q(eff)
< iff polarizations survive in the plasma (for ~ few sec) ?7??

o History
- Kulsrud, Furth, Valeo & Goldhaber, Phys Rev Lett 49 (82) 1248
- Lodder, Phys. Lett. A98 (83) 179
- Greenside, Budny & Post, J Vac Sci & Technology A2 (84)

- Coppi, Cowley, Kulsrud, Detragiache & Pegoraro, Phys Fluids 29 (86) 4060
- Kulsrud, Valeo & Cowley, Nucl Fusion 26 (86) 1443
- Cowley, Kulsrud, Valeo, E.J. Phys. Fluids 29 (86) 1443
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JLab-GA SPF (Spin-Polarized-Fusion) Collaboration

- Jefferson Lab
HDice:

A.M. Sandorfi, A. Deur, T. Kageya, M. Lowry, X. Wei HD

University of Virginia:
X. Zheng, W.A. Tobias

He
- General Atomics/Fusion Energy Research
GA-DIII-D:
G. Jackson, N. Eidietis, A. Hyatt, M. Lanctot, D. Pace, S. Smith, H. St-John
o plasma, orbit & transport simulation
GA-ICF Pellet Division:
M. Farrell, M. Hoppe, A. Nikroo ICF pellets for HD, *He
« Oak Ridge National Lab:
L. Baylor cryo-injection guns
* UC-Irvine:
W.W. Heidbrink

fast particle detection
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Potential Power gain from polarization in a large Tokamak

e J+t = a+n transport Modeling - Sterling Smith, GA

e Transport equation:
M +V -T'(heat flux)= S(source)
d(time)

= reaction rate x ¢ heating x spin enhancement
=N,N,(cV(T))x(E, =35 MeV)xF
i)

e Flux: U=T crussicat YL swrbutent polarization factor € [1, 1.5]
() ()
e simulation codes: NEO TGLF TGYRO

2
o steady-state flux matched to source: I' - +T —JSdV

F(N.ON, T.3T)
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ITER and FNSF total fusion power output increases

with fusion multiplier

140 . . . . . ® The ITER gain is
120 greater than the

fusion factor
100

— 60 MW to 120 MW
80 - for 50% increase
60 in fusion factor
40 | _

® FNSF gain is also
greater, but not by
20 | . as much

N — 8 MW to 14 MW

1.0 1.1 1.2 13 14 15 1.6

Fusion multiplier e net ITER gain is
a factor of 2 in power

Alpha heating vs fusion multiplier;
multiply by 5 To get total fusion power
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the path to polarized fuelling
e over past ~3 decades NP and HEP have developed polarized materials,
but with very different goals: 106 -102 s lifetimes in few mole samples
e Fusion energy would need only 1-10 s lifetimes, but K-moles/day

= simply scaling up NP/HEP production techniques is not appropriate
= new R&D would be required

= MUST demonstrate polarization survival before such an investment
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Strategy: use existing NP techniques and
equipment to create polarization life-times
sufficient to produce fuel for a test at DIII-D,
which mitigates costs.

Jefferson Lab



Measurement strategy - overview

« testreaction: D+’ He— a+p {mirror reactionto D+t — o +n}

e use existing JLab facilities to create solid HD ; ship to Tokamak
= diffuse 200-400 atm HD into ICF shells; cool to solid;
polarize H and D; H = D spin transfer to maximize D spin;
transport to DIlI-D Tokamak; load into cryo-gun

« use existing UVa facilities to polarize3ﬁe gas (~ 10-30 atm)
= remove polarizing agents, diffuse into ICF shells; cool to seal;
load into DIII-D cryo-gun

« generate H (or “He) plasma in the DIII-D Tokamak

=> inject polarized fuel into plasma, alternating alignment:
parallel: HD T +°He Nl

. . . & compare proton yields
anti-parallel: HD U +’He }
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A look at the experiment in a little detail

« polarization-dependent angular distributions

« preparation of polarized HD and polarized 3He

* |CF pellets and permeation of fuel material

+ the DIII-D Tokamak and pellet injection

« Tokamak geometry and simulations of expected orbits in DIII-D
« expected reaction rates in a DIII-D test experiment

« secondary reactions

« particle detection: eg. Fast-lon-Loss Detectors

e approximate time scale
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spin-dependent SHe+D = o+p (or t+D 3 o+n) angular distributions

p : : L
B - angles relative to the magnetic field direction

- neglecting interference terms (good to ~ 2-3 %)

do _(da
dQ._— dQ

cm

) {1—%P,)VP3H€ +%[3PDVP3Hesin29+%PDT(1—300829)]}
0

=2 angle integrated cross section :

2

(ZJSLZ, +1)
(21, +1)(2L.,, +1)

Jﬂ'

o, :60{1+%13DV -133He} . O, = (;:)22
D

i

50% cross section gain for 100% parallel spin alignment

(28 +1)L;. (28,+1)L,
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reaction rate in a heated plasma

Cross sections are averaged over a Maxwellian Velocity distribution

— 4c —&lkgT
(6V) = Zmiti _[ g o(e)de
eg: ITER I

ITER Design Report, Plasma Physics and Controlled Fusion 44 (2002) 519
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relevant energy range

tot
gcm

J sl e 5(e) de

running int{cV) = W(kBT)”

kT(ion) = 18 keV (ITER peak)
kT(ion) =12 keV (ITER mean)

10"
. 10™ - + KT(ion) = 5keV (DIII-D peak)
oog kT(ion) = 3 keV (DIlI-D mean)

E 10—19

2

B & : -1 °

g 107 i fusion rate(s™ ) :

7 07 N(CHe)-N(D)-(cV)-Vol(m®)
2 g L I R . entirely determined by energies
() O
S | < 120 keV (ITER)

- .DlII-D : :
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d+’He & o +p distributions wrt torus field

d+3He spins parallel d+°’He=>0+ p
d+3He spins anti-parallel

gmi
cm
de —&lkgT
NI J' e eo,(e)de
+ KkT(ion)= 5.0 keV (DIII-D peak)
kT(ion) = 3.3 keV (DIII-D mean)
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expected d+’He 9 o +p distributions in a DIII-D test experiment

——d+3He spins parallel d+ 3 He=>0 + p
— d+3He spins anti-parallel
Pv(d) =0.40, PT(d) =0.12
2 P =0.70
_ R 3He
P,(D)=040, P,(D)=0.12
2.0
P(’He)=0.70
1.5
(67V)=(c,V){1+1(028)}  w) et
e ot
1 e N
DR TP
0.5
0.0
08  -04 0 0.4 0.8
cos (6)
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Preparing HD fuel = talk by X. Wei
Friday, Parallel-VII: S10

process: HD, with impurities (104) of H, and D, condensed to solid
=» transferred to high field (15 tesla) and low temp (10-15 mK)

=> H, & D, impurities metastable, polarize rapidly, transfer spin to HD
= H, & D, catalysts decay, leaving HD in frozen-spin state (T,~108 s)

typical frozen-spin polarizations: P(H)=60%, PV(f)) =20%

RF transitions are used to move spin from Hto D = PV(D) =40%

large targets used in Nuclear Physics experiments at JLab and BNL

- these polarizations are ~ 7% of theoretical maximum
=> there maybe some further gain in small ICF pellet sizes
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Preparing *He fuel  eg. talk by J.P. Chen
Friday, Parallel-VIII: S10

m=1/2

P1/2

3He process - spin exchange optical pumping - \

* Rb vapor pumped with 795 nm laser -100W
(in oven > 200 C; with ~1 % N,; uniform B)

* Rb transfers polarization to K by collisions

left circulary pola

pho:lﬁc

ri

m=1/2

12

[)

m=-1/2

« K transfers spin to 3He by collisions B0 | R0

 typical polarizations in pumping chamber: 70% at 10 amagats (~ 10 atm)

Rb

(some further gain may be possible with the right geometry cell)

 large volume targets used in Nuclear Physics exp at JLab, SLAC,...

* need for high-power laser = must first polarize in glass cell,
= remove alkalis (~few ppm of 3He)

= then diffuse into ICF shell
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filling ICF shells

ICF shells:

- fabricated by GA-ICF Pellet division

- PAM (Poly-Alcohol repeating Monomer, CgH,,)
mandrel is coated with a glow discharge polymer
(GDP, CH, ;); heating to 600 K (326 C) dissociates
PAM which diffuses out through GDP, leaving a /
shell behind.

« GDP shells filled in high-pressure
chamber; pressure increased in steps to
maintain small pressure differential across shell walls.

eg. typically AP=2/3xXP,, ..

HD shells: 4 mm OD x 20 pm wall
3He shells: 4 mm (possibly 8 mm) OD x 20 ym wall
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eg. HD Shell filling times

* eg.4mm OD x 20 um wall GDP
shells require 23 hr to fill to 0.3 milli-
moles with HD at 575 K

e pressure drops as chamber is cooled
cryogenically:
- at 100 K, pressure = 73 atm,
permeation time ~ 1 year

=> pellet is sealed !!!

Tau (s)

- at 18 K, pressure = % atm,
exterior gas pumped away

& replaced with He for cooling

10*
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DIII-D Tokamak at GA, San Diego

2.1 tesla torus (normal-conducting coils)

‘‘‘‘‘‘

-
- [
- -
-~

o 2.1 tesla max

- Bramp up, 3 s
- flattop~10s
- ramp down, 7 s

* 15 min btw shots

« 80 keV neutral-beam
Injectors for heating
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DIII-D Tokamak at GA, San Diego

2.1 tesla torus (normal-conducting coils)

archive photo — during installation, ca ~ 1985
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o 2.1 tesla max

- Bramp up, 3 s
- flattop~10s
- ramp down, 7 s

* 15 min btw shots

« 80 keV neutral-beam
Injectors for heating
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pellet injection into DIII-D

* ORNL cryp-pellet injectors operating at 4 K
- pellets propelled by H, gas ~1000 m/s

Modifications:
» provide B field along full
length of guide tubes

» adapt to HD cartridges
(and possibly 3He)

1.0
* incorporate SQUIDS

08
&
c
@
T 06 0 % @ _ essnam i
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L 04t ® Hmode LFS|
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i

0oL * Hmode V+3|

' B Hmode HFS
A Gas
00 LA I I .
00 02 0.4 06 - 08
Baylor et al, Nucl Fus 47 (07) 1598 Edge Deposition Depth (m) Axis
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Magnetic Geometry of a Tokamak -a Series of Nested Flux Surfaces

e confinement via gyrotron oscillation around closed magnetic field lines
e Axis-symmetry: equivalent cross-sections at different toroidal positions

* Flux surfaces represent the region of closed magnetic field lines

Toroidal B
Direction

Cross section at Fixed
Toroidal Angle

Poloidal
field
Direction

Single Magnetic Field Line
D”’-D Pace & Lanctot/High Energy Fusion Product Detection
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Spin-Alignment and Orbit Losses

« parallel spins =» large V| =» large gyroradii = hit the wall in a few orbits

« anti-parallel spins = large VII =» small gyroradii = better confined

o and p loss-locations on Tokamak wall depend on initial polarizations

: Spin'2014 Symposium - AM. Sandorfi — October 21, 2014 @ @JSA
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tracking fusion products through DIII-D

e Orbit calculation follows a Parallel Spins, Parallel Births, 099

| 1.0
large (but limited) number of ::\_1,5 MeV Protons - i
physical steps along the ion ol - ]
trajectory, until a wall strike r 1| do08
is detected ~| confined throughout 7 - %

. . . 0.5 | orbit following _ = I,

e Most trajectories intersect " - - 3
the Tokamak wall wiithin a o /\ oo, (1 | 06 5
few orbits E 00[ &% | =

N ~ o 1>—<'

® For a+p born parallel to the 04 =
local field (6., = 0), some 05 £
are confined, depending on i Z

origin within the plasma

_10k 0.2
e Divertor region is location of [ es,
larges1- IOSS Popula.'-ion For lll l']#llllllllllllllllllll
° 1.01.21.4161.82.02.224
parallel birth Rrgpr (M)
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Peak Loss Fluxes Occur at Different wall locations

for Il (B,,~0) birth and L(0_,~90) birth fusion products

e Typical detector area = 4 x4 cm? Location of Maximum Loss Flux

Y J— e , S AT
e Expected fluxes from tracking: ¢ ¢ a-particles

~ 107 particles reach detector -081 | MM Protons :

eg. flux (in units of 10 pA): £ —1-05- ]

L Birth Anti-si?':allel Paraliel Spin X _1.2; Il ?irth i

a -particles 1.6 2.6 14 _\—1| ]

Protons 1.6 25 R - 11!3;3101(;"1)!8' 20 23 24
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Peak Loss Fluxes Occur at Different wall locations

for Il (B,,~0) birth and L(0_,~90) birth fusion products

e Typical detector area = 4 x4 cm? Location of Maximum Loss Flux

| B I | T
e Expected fluxes from tracking: i ¢ ¢ o—particles
~ 107 particles reach detector -08 | MM Protons .
eg. flux (in units of 10 pA): £ 1o -
: . " | /Birth

1 Birth A""s';?,:“"e' Parallel Spin 2] . i

a -particles 1.6 2.6 14k \—1| i
Profons 1.6 2.5 N R E— '113' 1(11)!81 20 22 24

° ° major m

o 28% difference (0,,-0;,)/0, = (44%)difference in proton signals,
in polarized cross sections due to polarized angular distributions
and how products propagate in B, .

e ftracking studies are underway fo optimize signal and detector locations
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secondary reactions

e use H-plasma heated with H neutral beams

e simulations follow secondary reactions to estimate background yields:
He + D = o + p(Q = +18.3 MeV) <—-------------------> E(p) ~ 15 MeV

5 D + D = 3He+n (Q = + 3.3 MeV)
B D+D>® t+p(Q-=+4.0MeV) <mms > E(p) ~ 3 MeV

LB D+t x+n(Q=+17.6 MeV)

e 15 MeV protons from *He + D = & + p provide a unique signature
that is easily separated
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Fast Ion Loss Detector (FILD) Measures the Energy and Pitch

Angle of Energetic Ions that Reach its Position on the Outer Wall

lon
light emission pattern -BLMW
b Gyro-radius = ion energy

b pitch (polar) angle

Aperture
FILD2 Scintillator Graphite Shield \
| Scintillator \ | \
‘ B
|
>
Pitch Angle
Chen et al, Rev Sci Inst 83 (2012) 10D707 L|ght Out to Camera/PMT
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Possible approximate Timeline

|. R&D (internally funded) to address open issues
in preparation for a proposal to US DOE

- plasma requirements, injection, fusion product detection
« 2013-2014 (2015) IR&D from General Atomics - funded v/

- HD: effects of ICF shell diffusion; max D polarization
(largely riding on the tail of ongoing NP target development)

- 3He: polarization after diffusion; max pressure
 some R&D required - tbd

2

Il. Possible Funding request for a full experiment

e eg. 2015-2016, proposal to US DOE (FES + NP)
= experiments at DIII-D ~ 2019

: DIlI-D Thomas Jefferson National Accelerator Facility @ g_jSA
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