

Helicity amplitudes for spin $\frac{1}{2}$ $\frac{1}{2}$ \rightarrow $\frac{1}{2}$ $\frac{1}{2}$

Matrix elements

$$\phi_1(s,t) = \langle ++ \mid M \mid ++ \rangle$$
 spin non-flip
 $\phi_2(s,t) = \langle ++ \mid M \mid -- \rangle$ double spin flip
 $\phi_3(s,t) = \langle +- \mid M \mid +- \rangle$ spin non-flip
 $\phi_4(s,t) = \langle +- \mid M \mid -+ \rangle$ double spin flip
 $\phi_5(s,t) = \langle ++ \mid M \mid +- \rangle$ single spin flip
 $\phi_i(s,t) = \phi_i^{EM}(s,t) + \phi_i^{HAD}(s,t)$ CNI

Single spin asymmetry

$$A_N(s,t)\frac{d\sigma}{dt} = \frac{-4\pi}{s^2} \text{Im} \left\{ \phi_5^* (\phi_1 + \phi_2 + \phi_3 - \phi_4) \right\}$$

$$A_N \frac{d\sigma}{dt} \approx -\frac{4\pi}{s^2} \text{Im} \phi_5^* \phi_+$$
 Probe for ϕ_5^{had}

 $r_5 = \frac{2m_p}{\sqrt{-t}} \frac{\phi_5^{nad}}{\text{Im} \phi_5^{had}}$

Cross section

$$\sigma_{tot} = \frac{4\pi}{S} \operatorname{Im} \left\{ \left. \phi_{1} + \phi_{3} \right\}_{t=0} = \frac{4\pi}{S} \operatorname{Im} \left. \phi_{+} \right|_{t=0} \right\}$$

Double spin asymmetries

$$A_{NN}(s,t)\frac{d\sigma}{dt} = \frac{4\pi}{s^2} \left\{ 2|\phi_5|^2 + \text{Re}(\phi_1^*\phi_2 - \phi_3^*\phi_4) \right\}$$

$$A_{SS}(s,t)\frac{d\sigma}{dt} = \frac{4\pi}{s^2} \operatorname{Re}\left\{\phi_1 \phi_2^* + \phi_3 \phi_4^*\right\}$$

$$\frac{A_{NN} + A_{SS}}{2} \frac{d\sigma}{dt} \approx \frac{4\pi}{s^2} \operatorname{Re} \phi_1 \left(\phi_2^* \right)$$
 Probe for ϕ_2^{had}

$$r_2 = \frac{\phi_2^{had}}{2\operatorname{Im}\phi_+^{had}}$$

$$\frac{A_{NN} - A_{SS}}{2} \frac{d\sigma}{dt} \approx -\frac{4\pi}{s^2} \operatorname{Re} \phi_1 \left(\phi_4^* \right) \approx 0$$

$$r_4 = \frac{m_p^2}{-t} \frac{\phi_4^{had}}{\text{Im}\phi_+^{had}} \qquad \frac{\phi_4^{had} \sim t \to 0}{\text{small in CNI}}$$

Detector and experimental conditions

$P_B P_Y = 0.372 \pm 0.056$

*Averaged for 4 fills from the official Run'09 RHIC polarimeter data: https://wiki.bnl.gov/rhicspin/Results

Unique possibility to measure A_N , A_{NN} , A_{SS} and, in general, A_{LL} at collider energies

- ✓ Roman Pots integrated with STAR detector – closest proximity to the beam.
- ✓ CNI region : 0.003 < -t < 0.03.</p>
- ✓ Ideal beam optics: β*= 21m and parallel to point focusing

 terms other than L_{EFF} in the transport matrix very small.

$$x_{\rm D} \approx L_{\rm eff}^x \Theta_x^*$$

 $y_{\rm D} \approx L_{\rm eff}^y \Theta_y^*$

- ✓ High transverse polarization of both beams ~60%.
- ✓ Excellent detector
 performance nearly 100%
 efficiency and only 5
 dead/noisy strips per ~14000
 active strips.

Elastic events, acceptance and t-ranges

- $\checkmark 2\pi$ acceptance in azimuthal angle.
- ✓ Exactly the same sample of elastic events for A_N and A_{NN}&A_{SS} studies

0.2

 $\delta\theta_x$ (mrad)

√ 5 t-ranges
<0.03 (GeV/c)²
</p>

Single spin asymmetry A_N

 "Square root formula" – no need for external luminosity normalization

$$\varepsilon_{N}(\varphi) = \frac{(P_{B} + P_{Y})A_{N}\cos\varphi}{1 + \delta(\varphi)} = \frac{\sqrt{N^{++}(\varphi)N^{--}(\pi + \varphi)} - \sqrt{N^{--}(\varphi)N^{++}(\pi + \varphi)}}{\sqrt{N^{++}(\varphi)N^{--}(\pi + \varphi)} + \sqrt{N^{--}(\varphi)N^{++}(\pi + \varphi)}}$$

$$A_{N}(t) = \frac{\sqrt{-t}}{m} \frac{\left[\kappa(1-\rho \delta) + 2(\delta \operatorname{Re} r_{5} - \operatorname{Im} r_{5})\right] \frac{t_{c}}{t} - 2(\operatorname{Re} r_{5} - \rho \operatorname{Im} r_{5})}{\left(\frac{t_{c}}{t}\right)^{2} - 2(\rho + \delta)\frac{t_{c}}{t} + (1+\rho^{2})}$$

- Statistical error of <3% in each of 5 points
- Many systematics checks
- Highest accuracy in extraction of r₅

Re
$$r_5 = 0.0017 \pm 0.0063$$

Im $r_5 = 0.007 \pm 0.057$

Other A_N measurements in CNI region

Double spin asymmetries

Cross section azimutual angular dependence for transversely polarized beams:

$$\sigma = \sigma_0 \left[1 + A_N (\vec{P}_B + \vec{P}_Y) \cdot \vec{n} + A_{NN} (\vec{P}_B \cdot \vec{n}) (\vec{P}_Y \cdot \vec{n}) + A_{SS} (\vec{P}_B \cdot \vec{s}) (\vec{P}_Y \cdot \vec{s}) \right]$$

 \vec{n} - vector normal to the scattering plane \vec{P}_B ; \vec{P}_Y - polarization vectors of the two beams

 $\vec{S} = \frac{\vec{n} \times \vec{p}}{|\vec{n} \times \vec{p}|}$ - is the vector in the scattering plane, normal to the initial momentum

$$2\pi \frac{d^2\sigma}{dtd\varphi} = \frac{d\sigma}{dt} \cdot \left(1 + (P_B + P_Y)A_N \cos\varphi + P_B P_Y (A_{NN} \cos^2\varphi + A_{SS} \sin^2\varphi)\right)$$

Double-spin effects

$$A_{NN}; A_{SS} = \frac{\sigma^{\uparrow \uparrow + \downarrow \downarrow} - \sigma^{\uparrow \downarrow + \downarrow \uparrow}}{\sigma^{\uparrow \uparrow + \downarrow \downarrow} + \sigma^{\uparrow \downarrow + \downarrow \uparrow}}$$

Raw double-spin asymmetry

$$A_2(\varphi) = P_B P_Y ((A_{NN} + A_{SS})/2 + (A_{NN} - A_{SS})/2 \cdot \cos 2\varphi)$$

- $\checkmark \cos 2\phi$ dependence for $A_{NN}-A_{SS}$
- ✓ NO angular dependence for $A_{NN}+A_{SS}$
- ✓ Cannot use square root formula
- ✓ Must use external normalization

Luminosity monitors: BBC and ZDC

- Luminosity monitors must not have double spin effects
- For normalization studies use 3 independent luminosity ratios (*N total monitor count*) :

$$R_2 = (N^{++} + N^{--})/N$$
 – fraction of parallel spin interactions (double spin)

$$R_B = (N^{++} + N^{+-})/N$$
 - fraction of interactions with spin UP in Blue beam

$$R_{V} = (N^{++} + N^{-+})/N$$
 - fraction of interactions with spin UP in Yellow beam

- Uncertainties: $\delta[P_B P_Y(A_{NN} + A_{SS})/2] \approx 2 \cdot \delta R_2$ $\delta[P_B P_Y(A_{NN} A_{SS})/2] \approx 0$
- Manifests as a shift in raw asymmetry, not a scaling factor!
- Main assumption: two different processes can have the same 20.003 spin sensitivity only in the case if it is zero in both of them
- Numerically, two (or more) processes can be considered free of spin effects if they give zero difference in corresponding independent normalization ratios R_2 , R_B , R_Y
- Careful choice of STAR subsystems as luminosity monitors best consistency checks, high statistics, two arms each:
 - ZDC zero degree calorimeters
 - BBC beam-beam counters
- Difference in R₂ normalization ratio for BBC and ZDC is ✓ systematically shifted from zero at the level of 1.4·10⁻³, averages out with fake polarization pattern
- Have to conclude: one of the two monitors feels double spin effects at this level => further investigation

Difference in R₂ double spin normalization ratio for BBC and ZDC

Luminosity monitors: inside BBC

- Three different subprocesses were compared to each other and to BBC as a whole in terms of R₂ normalization ratio:
 - High multiplicity: N>5 tiles in one arm and a hit in the opposite arm
 - Inner: single hit in one of the Inner tiles and a hit in the opposite arm
 - Outer: single hit in one of the Outer tiles and a hit in the opposite arm
- Confirmed that the subprocesses have significantly different physics -- angular dependence of single spin ratios R_B, R_Y is of opposite sign
- East and West arms show extremely good consistency average them
- Though R₂ spread is relatively large fill by fill, the averages for our 4 fills are very close to zero at 10⁻⁴ level
- Averaged ΔR_2 of each subprocess and the whole BBC are added in quadratures to form the total uncertainty δR_2 : $\delta R_2 = 1.56 \cdot 10^{-4}$

Asymmetries and relative amplitudes

- Accurate formulae for amplitudes from N. H. Buttimore et al, Phys.Rev. D59 114010 (1999)
- Approximate expressions decouple r₂ and r₄ -successive iterative fits
- (A_{NN}-A_{SS})/2 close to zero => A_{NN}≈A_{SS}
- $(A_{NN}+A_{SS})/2$ significantly below zero, >6 σ on average, t-dependence is flat
- Relative amplitudes include common errors
- Im r₂ is well constrained small negative value
- Re r₂ is compatible with 0
- Hypothesis r₄=0 is noncontroversial (85% c.l.)

Previous measurements of A_{NN}

Theoretical models, Odderon

E.Leader, T.L.Trueman

"The Odderon and spin dependence of highenergy proton-proton scattering", PR D61, 077504 (2000)

- Pomeron and Odderon are 90deg out of phase
- 5% Odderon contribution → 5% A_{NN}

T.L.Trueman

"Double-spin asymmetry in elastic proton-proton scattering as a probe for the Odderon", arXiv:hep-ph/0604153 (2006)

Conclusions

- □ Very clean data set of ~20 million pp-elastic events is taken with Roman Pots integrated into the STAR detector for low *t* studies
- □ Both single and double spin asymmetries are extracted with unprecedented accuracy in 5 *t*-ranges at \sqrt{s} =200 GeV.
- □ A_N result confirms conclusions at lower energies: r₅=0, no hadronic single spin flip is seen
- \Box (A_{NN} -A_{SS})/2 found to be close to 0, i.e. A_{NN} \approx A_{SS} and $\phi_4 \approx$ 0 as required by angular momentum conservation
- \Box (A_{NN} +A_{SS})/2 is significantly different from zero and have small negative values about 5·10⁻³
- \Box \mathbf{r}_2 is well constrained in its imaginary part and compatible with zero in real part
- \neg r₄ has large errors as expected and hypothesis r₄=0 is not controversial
- \Box Hadronic double spin-flip amplitudes ϕ_2 and ϕ_4 behave differently at our kinematic range. This indicates that the exchange mechanism is more complex than an exchange of Regge poles only (factorization of amplitudes does not hold).
- Results are at variance with the latest models and may attract the attention of theorists

Backups

Backups

Background subtraction

event selection for the traditional

approach

- Small background fraction 0.2—3%
- Yet high **fake** background asymmetry, x10 the effect, due to invalid luminosity normalization
- Traditional approach: extrapolate background, define background fraction and asymmetry for 'pure' background
- Advantage -- accurate statistical error estimates
- Drawback -- asymmetry from high χ^2 is applied to low χ^2
- Alternative: study asymmetry evolution when changing the cut on χ^2 , extrapolate to zero background
- Disadvantages no error estimates, cuts at low χ^2 affect

Evolution of the asymmetries with cut χ^2 value and extrapolation to zero background

- spatial elastic event selection and invalidate luminosity normalization
- Systematic error estimate by difference of the two methods
- Total error for each point by adding statistical and systematic errors in quadratures