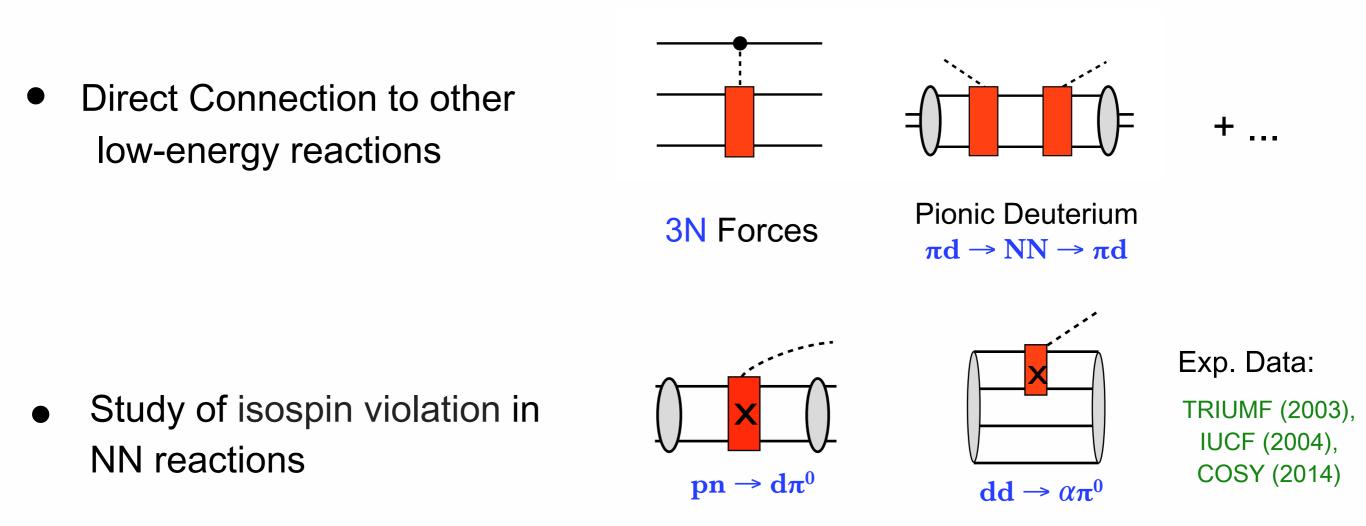


Role of Spin in NN \rightarrow NN π

Vadim Baru

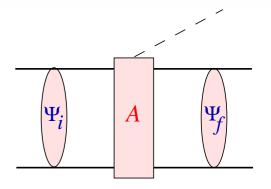

Institut für Theoretische Physik II, Ruhr-Universität Bochum Germany Institute for Theoretical and Experimental Physics, Moscow, Russia

Spin 2014, Beijing

in collaboration with E. Epelbaum, A. Filin, C. Hanhart, H. Krebs, A. Kudryavtsev, V. Lensky, U.-G. Meißner, F. Myhrer

recent review article Int. Jour. Mod. Phys. (2014)

$NN \rightarrow NN\pi$. Introduction


Non-trivial production mechanism: Channels with drastically different Cross Sections

For example: $pp \rightarrow d\pi^+ \text{ and } pp \rightarrow pp\pi^0$

• Appropriate Framework - Chiral EFT: successfully applied to πN and NN interactions - main ingredients of $NN \rightarrow NN\pi$ Weinberg, Gasser, Meißner, Epelbaum, ...

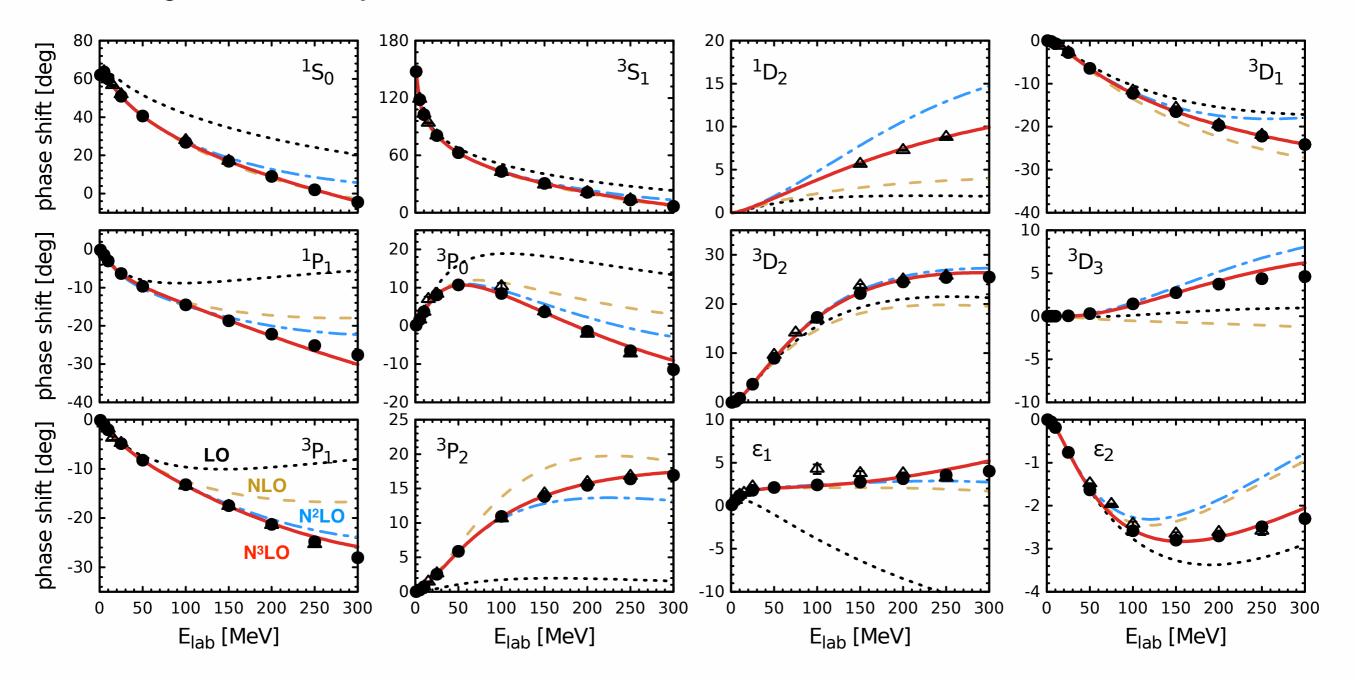
$NN \rightarrow NN\pi$ within hybrid chiral EFT.

- Chiral expansion of the production operator A at low energies
 - New scale in NN \rightarrow NN π : $p \simeq \sqrt{m_{\pi}m_{N}}$ initial NN momentum in cms

 $- \left[\chi \sim \frac{p}{\Lambda_{\chi}} \sim \sqrt{\frac{m_{\pi}}{m_{N}}} \right] - \text{expansion parameter in } NN \rightarrow NN\pi$ Cohen et al. (1996); Hanhart et al. (2000)

- Explicit $\Delta(1232)$ -resonance: $m_{\Delta} m_N \sim p$
- long-range operators (OPE, π -loops) \longrightarrow explicitly
- short-range mechanisms \rightarrow local contact operators(LECs)

Investigate convergence by explicit treatment of higher-order terms

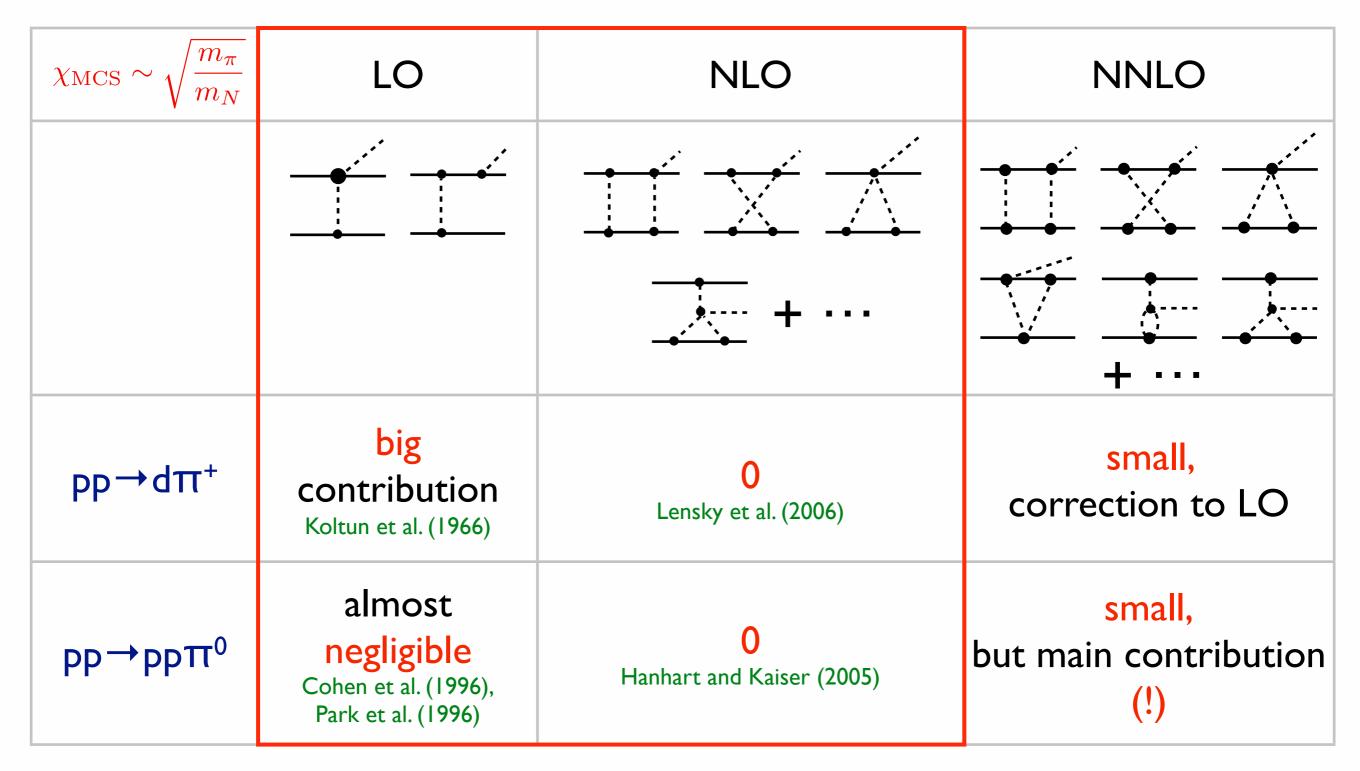

► Convolution with the NN wave functions: CD-Bonn, CCF, AV18, ...

and Chiral EFT

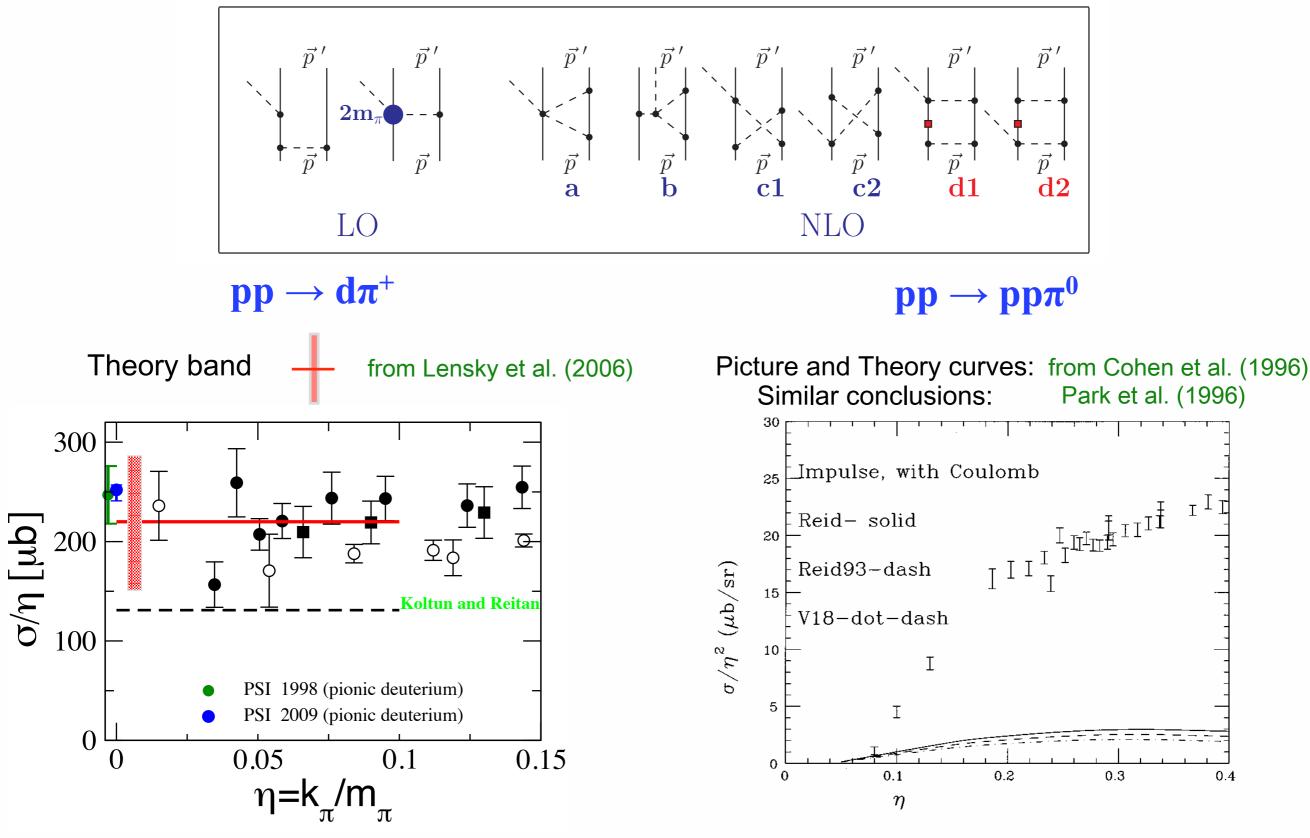
NN phase shifts in Chiral EFT

Convergence order by order: LO, NLO, N²LO, N³LO

Epelbaum et al. (2014)

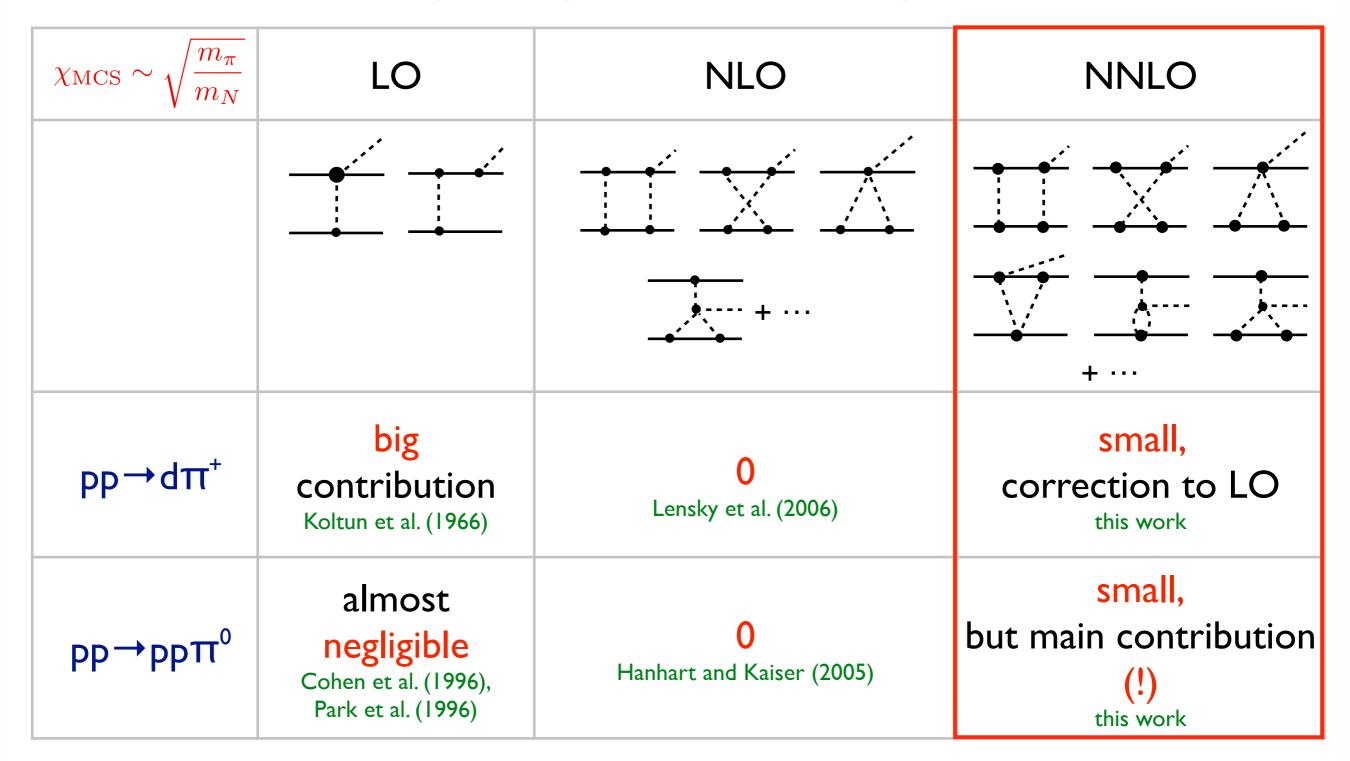


N³LO: Almost perfect description of Phase Shifts even above pion threshold: E_{lab}≈279 MeV

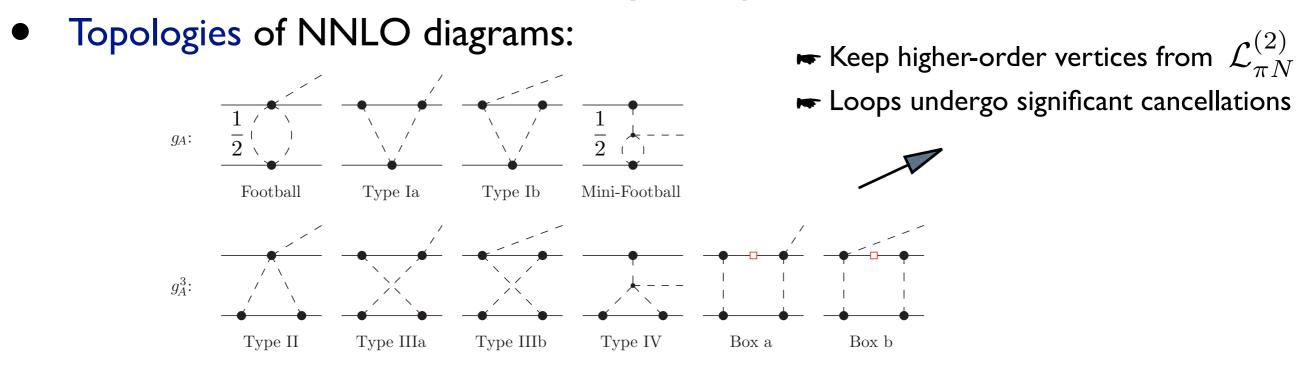

Calculation of NN \rightarrow NN π with Chiral wave functions becomes possible

From S-wave pion production to isospin violation in NN reactions

s-wave pion production operators


S-wave pion production: Theory vs. Experiment

Quantitative description


Underestimation of data by an order of magritude

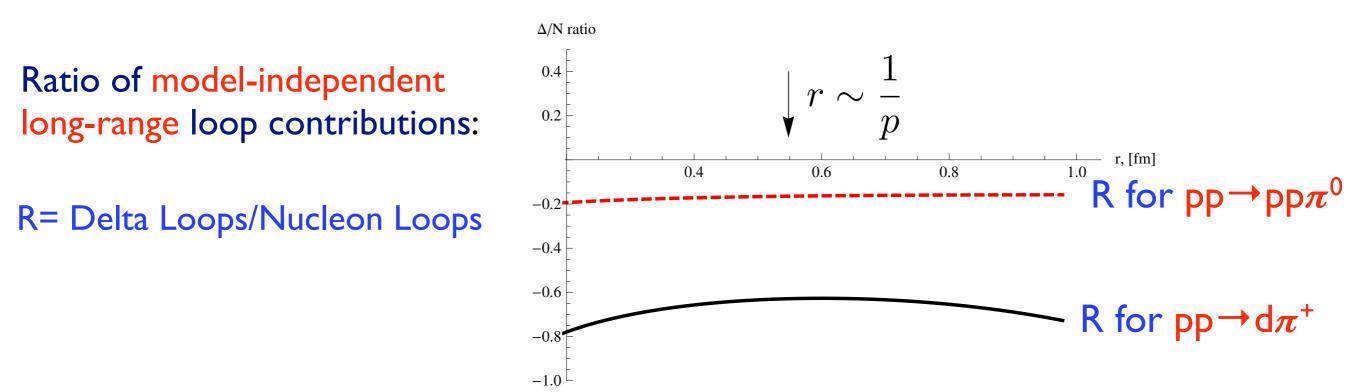
s-wave pion production operators

For $pp \rightarrow pp \pi^0 LO$ rescattering contribution is forbidden, NLO is zero \Rightarrow effects of NNLO loops are very important

NNLO loop-diagrams

• Compact analytic result:

Filin, V.B., Epelbaum, Hanhart, Krebs, Kudryavtsev, Myhrer (2012)


with only one basic integral: $I_{\pi\pi} = \frac{\mu^{\epsilon}}{i} \int \frac{d^{4-\epsilon}l}{(2\pi)^{4-\epsilon}} \frac{1}{(l^2 - m_{\pi}^2 + i0)((l+k_1)^2 - m_{\pi}^2 + i0)}$

Explicit Delta: More NNLO Loops

Delta-nucleon mass difference m_{Δ} - $m_{N} \approx 280 \text{ MeV} \rightarrow \text{same order as p}$ ΔII Δ IIIa $\Delta IIIb$ ΔIV $\Delta Box a$ $\Delta Box b$ \Rightarrow dynamical degree of freedom Filin, V.B., Epelbaum, Hanhart, Krebs, Kudryavtsev, Myhrer (2013) $iM_{\Delta-\text{loops}}^{\text{NNLO}} = \frac{g_A g_{\pi N \Delta}^2}{f^5} v \cdot q \,\tau_+^a \left(i \varepsilon^{\alpha \mu \nu \beta} v_\alpha k_{1\mu} S_{1\nu} S_{2\beta} \right)$ **Result:** $\times \left\{ \frac{2}{9} \left(I_{\pi\pi} + \frac{1}{2} \frac{J_{\pi\Delta}}{\Delta} + \Delta J_{\pi\pi\Delta} + \frac{2}{(4\pi)^2} \right) + \frac{1}{18} k_1^2 J_{\pi\pi N \Delta} \right\} \longrightarrow \mathsf{PP} \to \mathsf{PP} \pi^0$ $+ \frac{g_A g_{\pi N\Delta}^2}{f^5} v \cdot q \,\tau_{\times} (S_1 + S_2) \cdot k_1$ $\times \left\{ \frac{5}{9} \left(I_{\pi\pi} + \frac{1}{2} \frac{J_{\pi\Delta}}{\Delta} + \Delta J_{\pi\pi\Delta} + \frac{2}{(4\pi)^2} \right) + \frac{1}{18} k_1^2 J_{\pi\pi N\Delta} \right\}$ $\rightarrow pp \rightarrow d\pi^+$ $+\frac{8}{9}\frac{\delta^{2}}{k_{1}^{2}}\left(I_{\pi\pi}+\frac{1}{2}\frac{J_{\pi\Delta}}{\Delta}+\Delta J_{\pi\pi\Delta}+\frac{2}{(4\pi)^{2}}\right)-\frac{2}{27}\left(I_{\pi\pi}+\frac{1}{2}\frac{J_{\pi\Delta}}{\Delta}+\frac{1}{3}\frac{2}{(4\pi)^{2}}\right)\right\}.$

Correct analytic behavior: If $m_{\Delta} \rightarrow \infty$ the contribution of Delta vanishes (decoupling)

The Role of Long-range parts of Loops

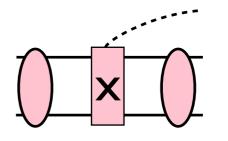
- Nucleon and Delta loops are of similar size: Proves power counting
- Net effect of long-range loops looks consistent with what is needed from Data
 - $pp \rightarrow d\pi^+$: result is small due to cancellations
 - good description of data already at NLO

 $pp \rightarrow pp \pi^0$: result is of sizable result is of sizable we probe NNLO contributions directly (LO + NLO ≈ 0)

Explicit calculation: in progress...

Charge symmetry breaking

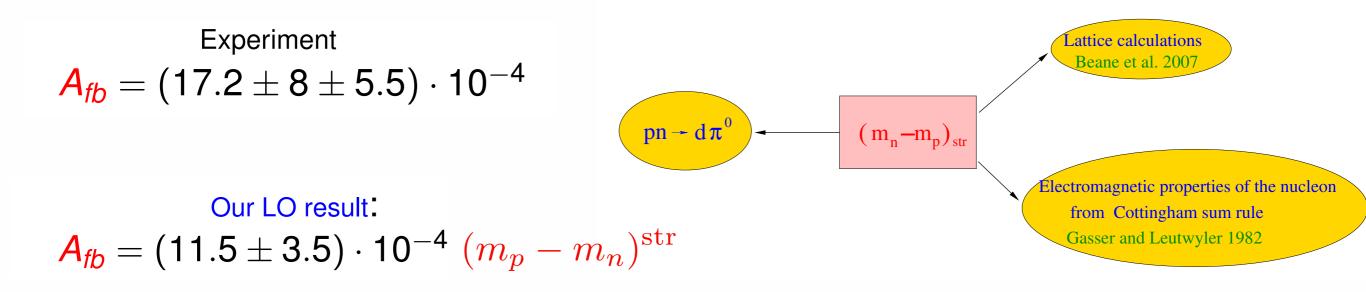
Charge symmetry – invariance under interchange of u- and d-quarks

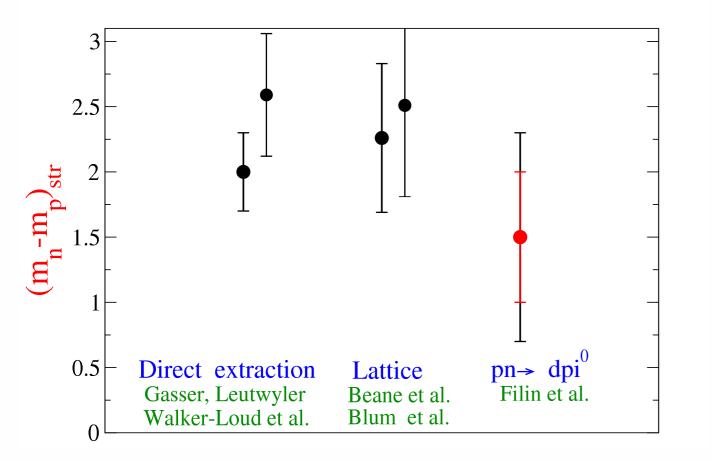

- Approximate symmetry of QCD
- Explicitly broken due to quark-mass difference and electromagnetic effects
- On the level of hadrons \rightarrow invariance under interchange of p and n

Charge symmetry breaking

Charge symmetry – invariance under interchange of u- and d-quarks

- Approximate symmetry of QCD
- Explicitly broken due to quark-mass difference and electromagnetic effects
- On the level of hadrons \rightarrow invariance under interchange of p and n





- Interchange of p and n changes differential cross section
- Forward-Backward Assymetry $A_{\rm fb} \propto \frac{\frac{d\sigma}{d\Omega}(\theta) \frac{d\sigma}{d\Omega}(\pi \theta)}{\frac{d\sigma}{d\Omega}(\theta) + \frac{d\sigma}{d\Omega}(\pi \theta)}$ TRIUMF (2003)

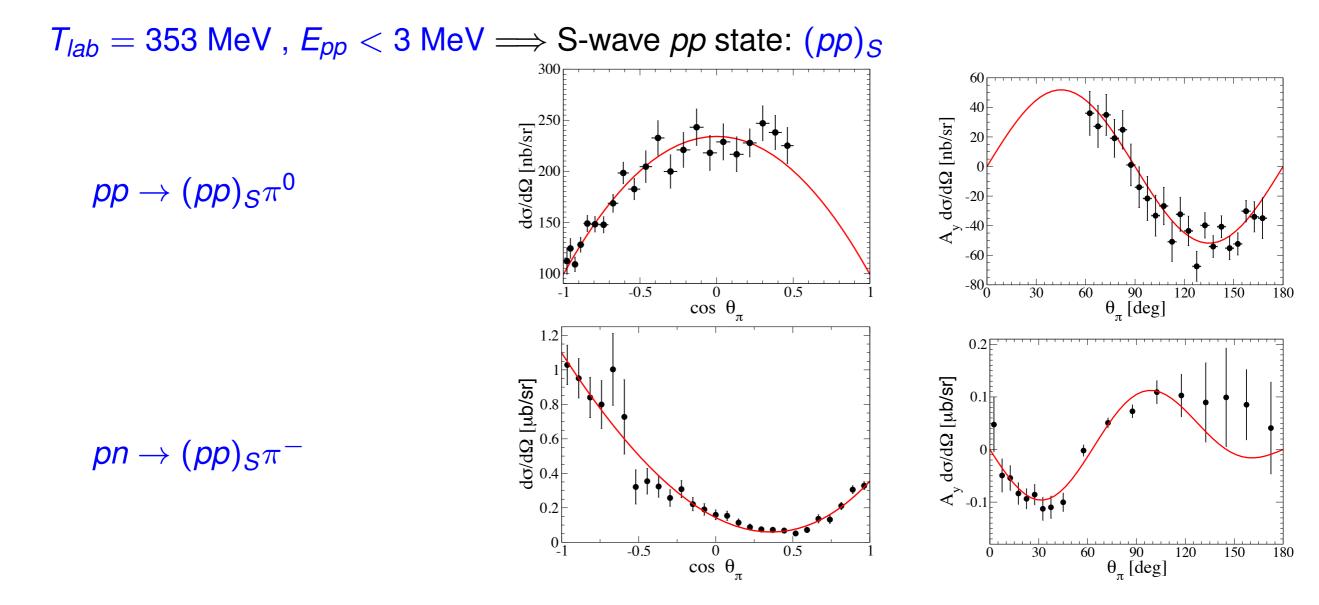
• Theory: $A_{\rm fb} \propto rac{{
m Re}(M_{
m s-wave}^{
m CSB}M_{
m p-wave}^{
m CS^*})}{|M_{
m s-wave}^{
m CS}|^2} \propto (m_p - m_n)^{
m str}$ due to $m_u - m_d$

Charge symmetry breaking in $pn \rightarrow d\pi^0$

Further Improvements require:

CSB Chiral Loops at NNLO

 \leftarrow Combined analysis together with $dd \rightarrow \alpha \pi^0$


First studies: Nogga et al. (2004,2006)

From $NN \rightarrow NN\pi$ to weak few-nucleon reactions, 3N-force, ...

p-wave pion production and $(N^{\dagger}N)^2 \pi$ LEC

 $\begin{array}{c} \pi d \rightarrow \gamma NN \\ Gardestig, Phillips (2006) \\ \gamma d \rightarrow \pi NN \end{array}$ $NN \rightarrow NN\pi$ Hanhart et al. (2000) Nakamura (2008) this study (2009) $\mu d \rightarrow v_{\mu} NN$ **MuSun (2010)** pd → pd Epelbaum (2002) Nogga et al. (2006) $NN \rightarrow dev$ Gårdestig, Phillips (2006) Park et al. (2003) **Gazit et al. (2009)** Nakamura (2008) $\mathcal{L} = -2d \ \left(N^{\dagger} \ S \cdot u \ N\right) N^{\dagger} N$ $f_{\pi} u_{\mu} = -\tau \partial_{\mu} \pi - \varepsilon_{3ab} V_{\mu} \pi_a \tau_b + f_{\pi} A_{\mu} + \cdots$

NN \rightarrow NN π : Best channel to extract LEC *d* is pn \rightarrow pp π^{-} V.B. et al (2009) Relevant Transition: ${}^{3}S_{1} \rightarrow {}^{1}S_{0}p \Rightarrow$ proposal to measure at COSY $pp \rightarrow (pp)_S \pi^0$ and $pn \rightarrow (pp)_S \pi^-$ at COSY and amplitude analysis (ANKE 2012)

- confirmed older TRIUMF data and extended them to the whole angular domain
- no signal of $\cos^4 \theta_{\pi}$ (and higher power) terms \implies partial waves higher than (pion) d-waves are irrelevant
- ► 5 partial waves: $M_{s-wave}^{^{3}P_{0}}$, $M_{p-wave}^{^{3}S_{1}}$, $M_{p-wave}^{^{3}D_{1}}$, $M_{d-wave}^{^{3}P_{2}}$ and $M_{d-wave}^{^{3}F_{2}}$ to be fitted to data

impose the phase information from NN interaction $M = |M|e^{i\delta_{|S|}}e^{i\delta_{FS|}}$ – Watson theorem for uncoupled or weakly coupled partial waves

Results of PWA

• Direct fit to data on $pp \rightarrow (pp)_S \pi^0$ yields for s- and d-wave amplitudes

$$M_{s-wave}^{^{3}P_{0}} = (55.3 \pm 0.4) - (14.7 \pm 0.1)i \sqrt{\text{nb/sr}}$$
$$M_{d-wave}^{^{3}P_{2}} = -(26.6 \pm 1.1) - (8.6 \pm 0.4)i \sqrt{\text{nb/sr}}$$
$$M_{d-wave}^{^{3}F_{2}} = (5.3 \pm 2.3) \sqrt{\text{nb/sr}}$$

- ▶ robust results confirmed by global fit to $pp \rightarrow (pp)_S \pi^0$ and $pn \rightarrow (pp)_S \pi^-$
- pion d-waves are quite large even near threshold
- comparison of χEFT^* with data on the amplitude level is possible

Results of PWA

• Direct fit to data on $pp \rightarrow (pp)_S \pi^0$ yields for s- and d-wave amplitudes

$$M_{s-wave}^{3P_{0}} = (55.3 \pm 0.4) - (14.7 \pm 0.1)i \sqrt{\text{nb/sr}}$$
$$M_{d-wave}^{3P_{2}} = -(26.6 \pm 1.1) - (8.6 \pm 0.4)i \sqrt{\text{nb/sr}}$$
$$M_{d-wave}^{3F_{2}} = (5.3 \pm 2.3) \sqrt{\text{nb/sr}}$$

- robust results confirmed by global fit to $pp \to (pp)_S \pi^0$ and $pn \to (pp)_S \pi^-$
- pion d-waves are quite large even near threshold
- comparison of χEFT^* with data on the amplitude level is possible
- But there is NO definite conclusion for p-wave amplitudes

PWA has 3 minima with almost the same χ^2 but with different p-wave amplitudes!

Resi

dø/dΩ [µb/sr]

 $\mathsf{A}_{\mathsf{x},\mathsf{x}}$

0.5

0

-0.5

- '

1,

-1

	Amplitude	Real	Imaginary	Im/Re	
sults of PWA	Solution 1: $\chi^2/ndf = 101/82$ solid line				
	$^{3}S_{1} \rightarrow ^{1}S_{0}p$	-37.5 ± 1.7	16.5 ± 1.9	-0.44 ± 0.06	
	$3D_1 \rightarrow S_0p$	-93.1 ± 6.5	122.7 ± 4.4	-1.32 ± 0.11	
	S	olution 2: χ^2/ndf =	= 103/82 dashed	line	
	$^{3}S_{1} \rightarrow ^{1}S_{0}p$	-63.7 ± 2.5	-1.3 ± 1.6	0.02 ± 0.03	
	$3D_1 \rightarrow S_0p$	-109.9 ± 4.2	52.9 ± 3.2	-0.48 ± 0.03	
		Solution 3: $\chi^2 / ndf = 106/82$ dotted line			
	$3S_1 \rightarrow S_0p$	-25.4 ± 1.9	-7.3 ± 1.5	0.20 ± 0.07	
	$^{3}D_{1} \rightarrow ^{1}S_{0}p$	-172.2 ± 5.6	92.0 ± 6.2	-0.53 ± 0.04	
a) a) 0.5	θ_{π} [deg]	,	e useful but h Y (2013): not	/ $d\Omega$ and A_y high precision net enough statistic	

Results of PWA. Theory Insights

Amplitude	Real	Imaginary	$tan(\delta) = Im/Re$			
Solution 1: $\chi^2 / ndf = 101/82$						
$3S_1 \rightarrow S_0p$	-37.5 ± 1.7	16.5 ± 1.9	$-$ 0.44 \pm 0.06			
$3D_1 \rightarrow S_0p$	-93.1 ± 6.5	122.7 ± 4.4	-1.32 ± 0.11			
Solution 2: $\chi^2 / ndf = 103/82$						
$3S_1 \rightarrow S_0p$	-63.7 ± 2.5	-1.3 ± 1.6	0.02 ± 0.03			
$3D_1 \rightarrow S_0p$	-109.9 ± 4.2	52.9 ± 3.2	$-\textbf{0.48} \pm \textbf{0.03}$			
Solution 3: $\chi^2 / ndf = 106/82$						
$3S_1 \rightarrow S_0p$	-25.4 ± 1.9	-7.3 ± 1.5	$\textbf{0.20} \pm \textbf{0.07}$			
$^{3}D_{1} \rightarrow ^{1}S_{0}p$	-172.2 ± 5.6	92.0 ± 6.2	$-\textbf{0.53}\pm\textbf{0.04}$			

- ► Phases should not be far from those predicted by the Watson theorem: $\tan \delta_{3S_1} = 0.03$ and $\tan \delta_{3D_1} = -0.46$ (SAID, Arndt et al.(2000))
- Preference against solution 1 and possibly in favour of solution 2.
- For the relevant ${}^{3}S_{1} \rightarrow {}^{1}S_{0}p$ amplitude our N²LO χ EFT* calculation (2009) gave -53.7 2.6 I \implies indication in favour of solution 2

Results of PWA. Theory Insights

Amplitude	Real	Imaginary	$tan(\delta) = Im/Re$			
Solution 1: $\chi^2 / ndf = 101/82$						
$3S_1 \rightarrow S_0p$	-37.5 ± 1.7	16.5 ± 1.9	$-$ 0.44 \pm 0.06			
$3D_1 \rightarrow S_0p$	-93.1 ± 6.5	122.7 ± 4.4	-1.32 ± 0.11			
Solution 2: $\chi^2 / ndf = 103/82$						
$^3S_1 ightarrow ^1S_0 p$	-63.7 ± 2.5	-1.3 ± 1.6	0.02 ± 0.03			
$3D_1 \rightarrow S_0p$	-109.9 ± 4.2	52.9 ± 3.2	$-\textbf{0.48}\pm\textbf{0.03}$			
Solution 3: $\chi^2 / ndf = 106/82$						
$3S_1 \rightarrow S_0p$	-25.4 ± 1.9	-7.3 ± 1.5	$\textbf{0.20} \pm \textbf{0.07}$			
$3D_1 \rightarrow S_0p$	-172.2 ± 5.6	92.0 ± 6.2	$-\textbf{0.53}\pm\textbf{0.04}$			

- ► Phases should not be far from those predicted by the Watson theorem: $\tan \delta_{3S_1} = 0.03$ and $\tan \delta_{3D_1} = -0.46$ (SAID, Arndt et al.(2000))
- Preference against solution 1 and possibly in favour of solution 2.
- For the relevant ${}^{3}S_{1} \rightarrow {}^{1}S_{0}p$ amplitude our N²LO χ EFT* calculation (2009) gave -53.7 2.6 I \implies indication in favour of solution 2 (tan $\delta = 0.05$)

Summary

We investigate chiral dynamics in the reaction NN-NN π at low energies

Non-trivial production mechanism

- → $pp-d\pi^+$ is dominated by the Weinberg-Tomosawa mechanism while $pp-pp\pi^0$ probes higher-order (NNLO) contributions
- \rightarrow Chiral Loops at NNLO are derived: big potential to understand data in both channels

<u>Charge symmetry breaking in NN-NN π </u>

- ➔ Access to the quark-mass induced contribution to the proton-neutron mass difference
- → NLO calculation of pn- $d\pi^0$ in agreement with lattice and dispersive results Connection to other low-energy reactions: LEC d
- **Can be extracted from NN-NN** π : pn-pp π ⁻ measured at COSY
- \rightarrow PWA of data: no unique solution for the relevant ${}^{3}S_{1} {}^{1}S_{0}p$ amplitude
- → PWA + theory constraints: probably the unique solution