Relativistic Studies of Spin-Isospin Resonances --- Towards exotic deformed nuclei

Haozhao Liang (梁豪兆) RIKEN Nishina Center October 24, 2014

The 21st International Symposium on Spin Physics October 20-24, 2014, Beijing, China

Contents

Introduction

- Covariant density functional theory
- > Spin-isospin excitations in spherical nuclei
- Fowards exotic deformed nuclei
- Summary and perspectives

Nuclear spin-isospin excitations

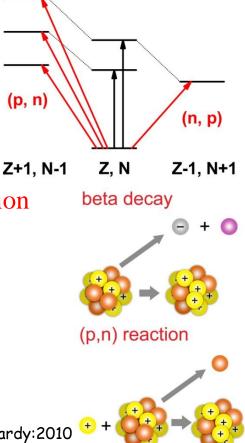
Nuclear spin-isospin excitations

- > β -decays in nature
- charge-exchange reactions in lab

These excitations are important to understand

- > spin and isospin properties of in-medium nuclear interaction
- effective nucleon-nucleon tensor forces Bai: 2010
- neutron skin thickness Krasznahorkay:1999, Vretenar:2003, Yako:2006
- > β -decay rates of *r*-process nuclei Engel:1999, Borzov:2006
- > neutrino-nucleus cross sections Kolbe:2003, Vogel:2006, Paar:2008
- \succ $\beta\beta$ -decay rates Ejiri:2000, Avignone:2008
- Unitarity of Cabibbo-Kobayashi-Maskawa matrix Towner&Hardy:2010

The theories achieving consistent treatment of the spin and isospin degrees of freedom are highly desired.



Covariant density functional theory

- Fundamental: Kohn-Sham Density Functional Theory
- CDFT starting point: effective Lagrangian density Walecka & Serot: 1986, Long: 2006

$$\mathscr{L} = \vec{\psi} \left[i\gamma^{\mu}\partial_{\mu} - M - g_{\sigma}\sigma - \gamma^{\mu} \left(g_{\omega}\omega_{\mu} + g_{\rho}\vec{\tau} \cdot \vec{\rho}_{\mu} + e\frac{1 - \tau_{3}}{2}A_{\mu} \right) - \frac{f_{\pi}}{m_{\pi}}\gamma_{5}\gamma^{\mu}\partial_{\mu}\vec{\pi} \cdot \vec{\tau} \right] \psi$$

$$+ \frac{1}{2}\partial^{\mu}\sigma\partial_{\mu}\sigma - \frac{1}{2}m_{\sigma}^{2}\sigma^{2} - \frac{1}{4}\Omega^{\mu\nu}\Omega_{\mu\nu} + \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} - \frac{1}{4}\vec{R}_{\mu\nu} \cdot \vec{R}^{\mu\nu} + \frac{1}{2}m_{\rho}^{2}\vec{\rho}^{\mu} \cdot \vec{\rho}_{\mu}$$

$$+ \frac{1}{2}\partial_{\mu}\vec{\pi} \cdot \partial^{\mu}\vec{\pi} - \frac{1}{2}m_{\pi}^{2}\vec{\pi} \cdot \vec{\pi} - \frac{1}{4}F^{\mu\nu}F_{\mu\nu}$$

Comparing to traditional non-relativistic DFT

Effective Lagrangian

connections to underlying theories, QCD at low energy

- Dirac equation consistent treatment of spin d.o.f. & nuclear saturation properties
- Lorentz covariant symmetry consistent treatment of isospin d.o.f. & unification of time-even and time-odd components

Dirac equations and RPA

> Energy functional of the system $E = \langle \Phi_0 | H | \Phi_0 \rangle = E_k + E_{\sigma}^D + E_{\omega}^D + E_{\rho}^D + E_{A}^D + E_{\sigma}^E + E_{\omega}^E + E_{\rho}^E + E_{A}^E + E_{A}^E + E_{\mu}^E$

Dirac equations for the ground-state properties

$$\int d\mathbf{r}' h(\mathbf{r}, \mathbf{r}') \psi(\mathbf{r}') = \varepsilon \psi(\mathbf{r}), \quad \text{with} \quad h^{\mathrm{D}}(\mathbf{r}, \mathbf{r}') = \left[\Sigma_{T}(\mathbf{r})\gamma_{5} + \Sigma_{0}(\mathbf{r}) + \beta \Sigma_{S}(\mathbf{r})\right] \delta(\mathbf{r} - \mathbf{r}'),$$
$$h^{\mathrm{E}}(\mathbf{r}, \mathbf{r}') = \begin{pmatrix} Y_{G}(\mathbf{r}, \mathbf{r}') & Y_{F}(\mathbf{r}, \mathbf{r}') \\ X_{G}(\mathbf{r}, \mathbf{r}') & X_{F}(\mathbf{r}, \mathbf{r}') \end{pmatrix}.$$

RPA equations for the vibrational excitation properties Ring & Schuck:1980

$$\begin{pmatrix} \mathcal{A} & \mathcal{B} \\ -\mathcal{B} & -\mathcal{A} \end{pmatrix} \begin{pmatrix} X \\ Y \end{pmatrix} = \omega_{\nu} \begin{pmatrix} X \\ Y \end{pmatrix}$$

- $\delta E/\delta \rho \rightarrow$ equation of motion for nucleons: **Dirac (-Bogoliubov) equations**
- $\delta^2 E / \delta \rho^2 \rightarrow$ linear response equation: (Q)RPA equations

CDFT+RPA in charge-exchange channel

Particle-hole residual interactions HZL, Giai, Meng, Phys. Rev. Lett. 101, 122502 (2008)

> σ -meson $V_{\sigma}(1,2) = -[g_{\sigma}\gamma_0]_1[g_{\sigma}\gamma_0]_2 D_{\sigma}(1,2)$

- $\succ \omega \text{-meson} \qquad \qquad V_{\omega}(1,2) = [g_{\omega}\gamma_0\gamma^{\mu}]_1 [g_{\omega}\gamma_0\gamma_{\mu}]_2 D_{\omega}(1,2)$
- $\succ \rho\text{-meson} \qquad V_{\rho}(1,2) = [g_{\rho}\gamma_{0}\gamma^{\mu}\vec{\tau}]_{1} \cdot [g_{\rho}\gamma_{0}\gamma_{\mu}\vec{\tau}]_{2}D_{\rho}(1,2)$
- > pseudovector π -N coupling

$$V_{\pi}(1,2) = -\left[\frac{f_{\pi}}{m_{\pi}}\vec{\tau}\gamma_{0}\gamma_{5}\gamma^{k}\partial_{k}\right]_{1}\cdot\left[\frac{f_{\pi}}{m_{\pi}}\vec{\tau}\gamma_{0}\gamma_{5}\gamma^{\prime}\partial_{\prime}\right]_{2}D_{\pi}(1,2)$$

> zero-range counter-term of π -meson

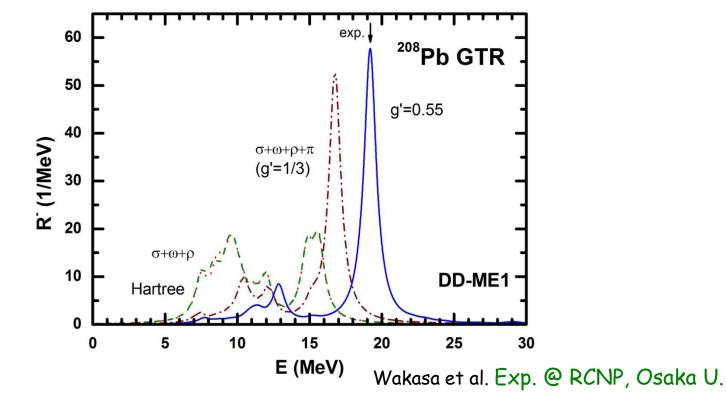
$$V_{\pi\delta}(1,2) = g'[\frac{f_{\pi}}{m_{\pi}}\vec{\tau}\gamma_0\gamma_5\boldsymbol{\gamma}]_1 \cdot [\frac{f_{\pi}}{m_{\pi}}\vec{\tau}\gamma_0\gamma_5\boldsymbol{\gamma}]_2 \delta(\mathbf{r}_1 - \mathbf{r}_2), \quad g' = 1/3$$

For the correct asymptotic behavior at high q, g' is not a parameter, but must be 1/3.

Previous results in Hartree level

CDFT+RPA for spin-isospin resonances (with only Hartree terms) De Conti:1998, 2000, Vretenar: 2003, Ma:2004, Paar:2004, Niksic:2005

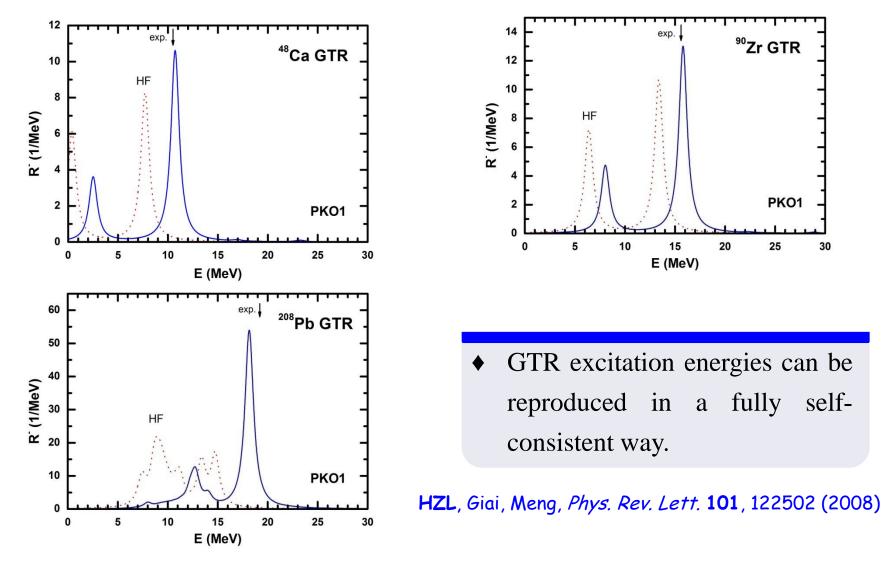
example: Gamow-Teller resonance (GTR) in ²⁰⁸Pb ($\Delta S = 1$, $\Delta L = 0$, $J^{\pi} = 1^+$)



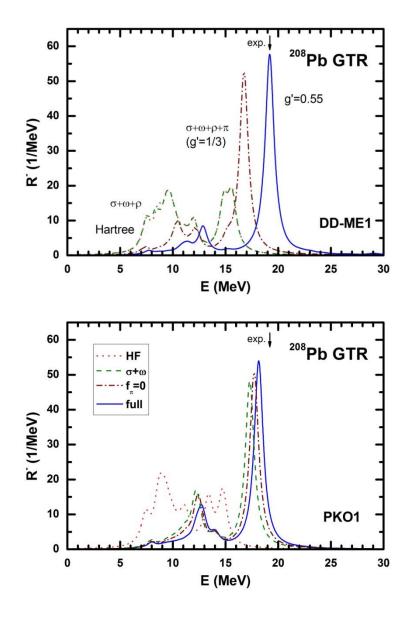
• One has to add π and fit $g' \rightarrow$ Self-consistency is lost

Gamow-Teller resonances

CDFT+RPA for Gamow-Teller resonances (with both Hartree & Fock terms)



Physical mechanisms of GTR



With only Hartree terms

- No contribution from isoscalar σ and ω mesons, because exchange terms are missing.
- π -meson is dominant in this resonance.
- g' has to be retted to reproduce the experimental data.

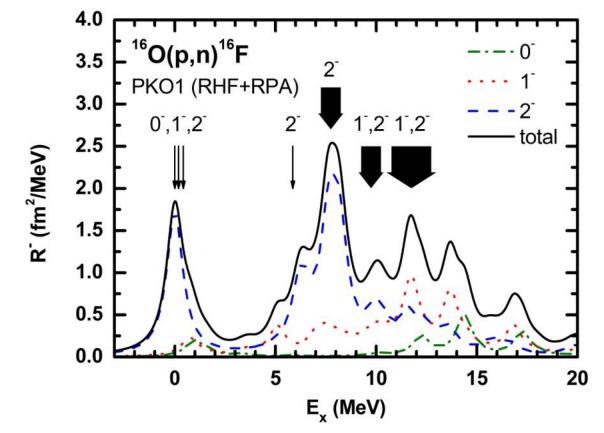
With both Hartree & Fock terms

- Isoscalar σ and ω mesons play an essential role via the exchange terms.
- π -meson plays a minor role.
- g' = 1/3 is kept for self-consistency.

HZL, Giai, Meng, PRL 101, 122502 (2008) HZL, Zhao, Ring, Roca-Maza, Meng, PRC 86, 021302(R) (2012)

Spin-dipole resonances

CDFT+RPA for spin-dipole resonances ($\Delta S = 1, \Delta L = 1, J^{\pi} = 0^{-}, 1^{-}, 2^{-}$)

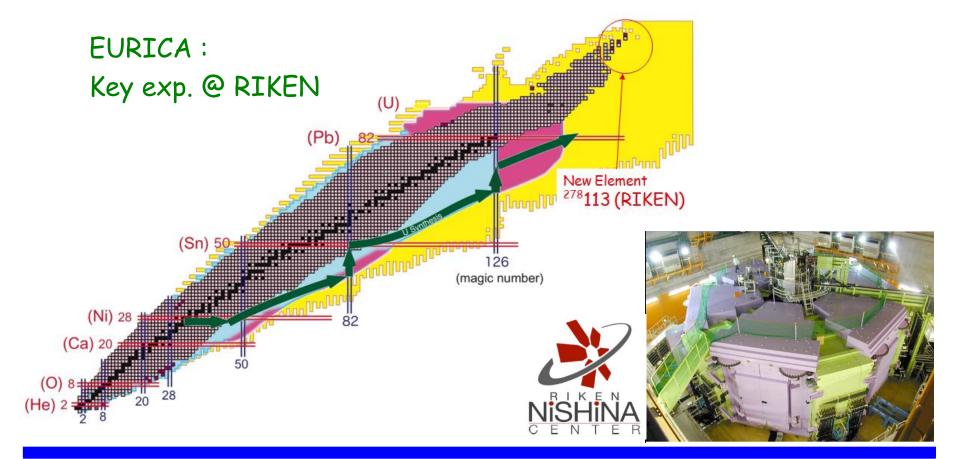


(Exp.) Wakasa et al., PRC 84, 014614 (2011); (Theory) HZL, Zhao, Meng, PRC 85, 064302 (2012)

• A crucial test for the theoretical predictive power.

β decays and *r*-process

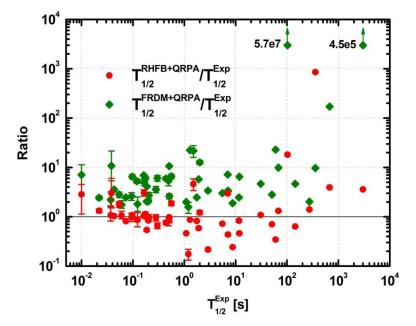
Nuclear β decays and *r*-process nucleosynthesis

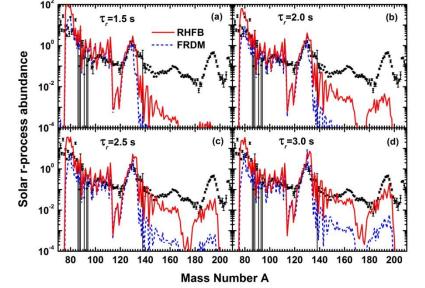


• EURICA project is providing lots of new β -decay data towards *r*-process path.

β decays and *r*-process

Nuclear β **-decay rates and** *r***-process flow** ($Z = 20 \sim 50$ region)





FRDM: widely used nuclear input RHFB: CDFT results with T=0 pairing

Niu, Niu, HZL, Long, Niksic, Vretenar, Meng, Phys. Lett. B 723, 172 (2013)

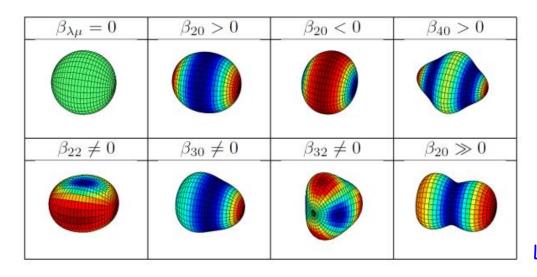
• Classical *r*-process calculation shows a faster *r*-matter flow at the N = 82 region and higher *r*-process abundances of elements with $A \sim 140$.

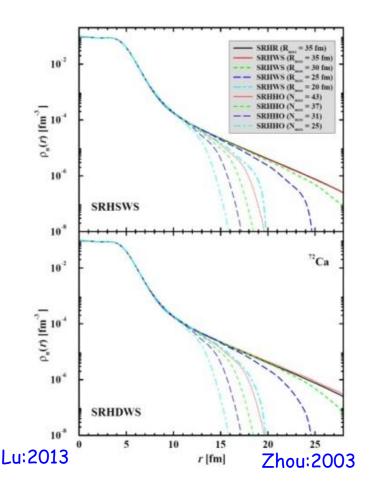
Towards deformed nuclei

Goal: To study spin-isospin excitations in exotic deformed nuclei

- correct asymptotic behavior
- > to break all geometric symmetries
- exotic shapes / exotic excitation modes
- reasonable computational time

CDFT on 3D mesh: ground states & excitations

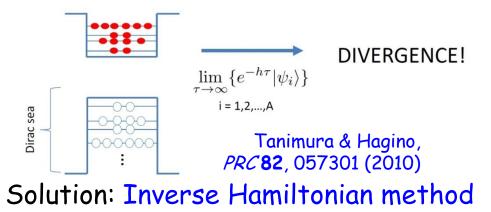




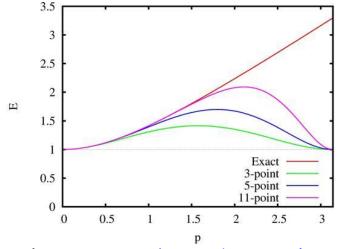
CDFT on 3D mesh: ground states

Challenge 1: Variational collapse

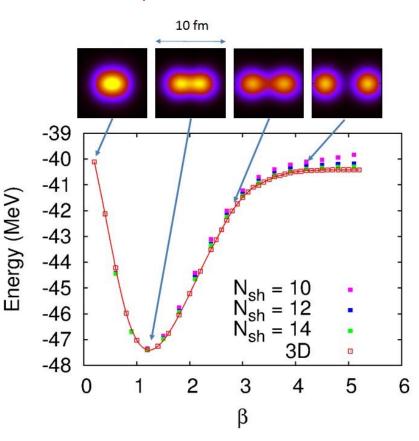
Preliminary results: ⁸Be



Challenge 2: Fermion doubling



Solution: High-order Wilson terms



Tanimura, Hagino, HZL, in preparation

CDFT on 3D mesh: excitations

Computational challenge for the excitations in deformed systems

A promising solution: Finite amplitude method Nakatsukasa, Inakura, Yabana, PRC76, 024318 (2007) 20 25 Computational time for ¹²⁰Sn ISGMR ²⁰⁸Pb ISGMR 20 15 matrxi form m-FAM (no sea) Computational time R (10³ fm⁴/MeV) iterative form n-FAM (full) expt. i-FAM (full) 15 10 10 5 5 DD-PC1 0 0 10000 4000 6000 8000 10 15 20 5 25 **QRPA** matrix dimension E (MeV) (Left: data from Avogadro:2013) HZL, Nakatsukasa, Niu, Meng, PRC 87, 054310 (2013)

- The combination CDFT + FAM works well for the spherical and also the axially deformed systems. Niksic et al., PRC 88, 044327 (2013)
- To develop CDFT + FAM for the 3D deformed systems.

Summary and Perspectives

 Self-consistent and covariant descriptions of nuclear spin-isospin excitations for spherical cases.
 spin isospin resonances, r process, CKM unitarity.

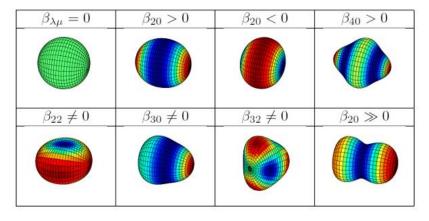
spin-isospin resonances, *r*-process, CKM unitarity,

Towards deformed cases: CDFT on 3D mesh

- Ground states: Solving Dirac equations on 3D mesh inverse Hamiltonian method, high-order Wilson terms
- Excitations: Finite amplitude method for relativistic RPA In mesh representation, the effects of Dirac sea can be included implicitly and automatically.

Exotic shapes Exotic excitation modes

.....



Acknowledgments

In collaboration with

INFN-Milan	Gianluca Colò, Xavier Roca-Maza, Yifei Niu
Lanzhou U.	Huai-Qiang Gu, Wen Hui Long
Tohoku U.	Kouichi Hagino
Tokyo U. Sci.	Chikako Ishizuka
RISP	Youngman Kim, Yeunhwan Lim
Peking U.	Jie Meng, Shihang Shen
RIKEN	Takashi Nakatsukasa, Kazuko Sugawara-Tanabe
Zagreb U.	Tamara Nikšić, Dario Vretenar
Anhui U.	Zhongming Niu
TU München	Peter Ring
IPN-Orsay	Yusuke Tanimura, Nguyen Van Giai
Osaka U.	Hiroshi Toki
Kyoto U./Argon	ne Pengwei Zhao
ITP-CAS	Shan-Gui Zhou Thank you!