The 21st International Symposium on Spin Physics (Spin2014) Oct. 20-24, 2014, Beijing, China

Measurement of Collins Asymmetry in Inclusive Production of Pion Pairs at BESIII

GUAN Yinghui

(E-mail: guanyh@ihep.ac.cn)

Institute of High Energy Physics (IHEP, CAS)

(on behalf of the BESIII collaboration)

Outline

- Introduction
 - Collins Fragmentation Function
 - BEPCII and BESIII
- Analysis Overview
 - Analysis method
 - Extraction of the Collins asymmetry
 - Preliminary results: asymmetries vs. pion fractional energies

Summary and Outlook

Collins Fragmentation Function(FF)

J. C. Collins, Nucl. Phys. B396, 161 (1993)

$$\begin{split} D_{hq^{\uparrow}}(z,P_{h\perp}) &= D_1^q(z,P_{h\perp}^2) \\ &+ \overbrace{H_1^{\perp q}(z,P_{h\perp}^2)}^{\left(\hat{\mathbf{k}}\times\mathbf{P}_{h\perp}\right)\cdot\mathbf{S}_q}_{ZM_h}, \end{split}$$

 D_1 : the unpolarized FF

 H_1 : Collins FF

- \rightarrow describes the fragmentation of a transversely polarized quark into a spinless hadron h.
- \rightarrow depends on $z = 2E_h/\sqrt{s}$, $P_{h\perp}$
- →leads to an azimuthal modulation of hadrons around the quark momentum.

SIDIS

Transversity \otimes Collins FF

Collins FF 🚫 Collins FF

Global Analysis on Collins FF

Anselmino et al., PRD 87, 094019 (2013)

Using data from HERMES, COMPASS, Belle

Transversity

Collins pion FF

- The Q² evolution of Collins FFs was assume the same as that for the unpolarized FF, and this has not be validated.
- Low Q² data from e+e- collider is useful.
- BEPCII
 - Similar Q² coverage with SIDIS.
 - Predication in

PRD 88. 034016 (2013) P. Sun, F. Yuan

BEPCII and **BESIII**

Beijing Electron Positron Collider-II (BEPCII)

NIM A614, 345 (2010)

Large acceptance: $93\% *4\pi$

- e+e- symmetric collider, unpolarized beams
- Beam energy: 1.0-2.3GeV (Q: ~2.0-4.6GeV)
- Achieved luminosity: 0.7×10^{33} cm⁻²s⁻¹@3.773GeV

Data Sample and Event Selection

- Number of charged tracks >=3
- Number of charged pion>=2
- **N**_{electron} = 0 to suppress Bhabha
- The total visible energy E_{vis}>1.5GeV.

For the charged π

- $0.3 < z = 2E_h/\sqrt{s} < 0.9$
- open angle >120° to select backto-back pion-pair. Also suppress $\mathbf{M}_{\pi\pi}$ resonance.

6

The Reference Frame

$$\sigma \sim 1 + \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \cos(2\phi_0) \mathcal{F} \left[\frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_1(z_1) \bar{D}_1(z_2)} \right]$$

$$\mathcal{F}[X] = \sum_{q\bar{q}} \int [2\hat{\mathbf{h}} \cdot \mathbf{k_{T1}} \hat{\mathbf{h}} \cdot \mathbf{k_{T2}} - \mathbf{k_{T1}} \cdot \mathbf{k_{T2}}]$$

$$d^2 \mathbf{k_{T1}} d^2 \mathbf{k_{T2}} \delta^2 (\mathbf{k_{T1}} + \mathbf{k_{T2}} - \mathbf{q_T}) X$$

$$k_{Ti} = z_i p_{Ti}$$

Collins effect: cosine modulation.

Product of Two Collins FFs

- Favored fragmentation process describes the fragmentation of a quark of flavor q into a hadron with a valence quark of the same flavor: i.e.: $u \rightarrow \pi^+$, $d \rightarrow \pi^-$
- **Disfavored** for $d \rightarrow \pi^+$, $u \rightarrow \pi^-$

- All charged pion pairs are divided into:
 - Unlike-sign pairs $(\pi^+\pi^-)$
 - Like-sign pairs ($\pi^+\pi^+$ and $\pi^-\pi^-$)
 - All Charged pairs ($\pi \pi$)

2φ₀ Raw Distribution

The normalized ratio

$$R := \frac{N(2\phi_0)}{\langle N_0 \rangle}$$

- \triangleright For Charged, Unlike-sign and Like-sign pairs, we have R^{U} , R^{C} , R^{L}
- Raw $2\phi_0$ distributions are subjected to the limited acceptance and non-uniform efficiencies of the detector!
- The MC simulation does not include the Collins effect.
- Small deviations in Like and Unlike in data indicate asymmetries.

Double Ratio

• Acceptance effects and radiation effects can be reduced by performing the ratio of Unlike/Like sign pion pairs (R^{U}/R^{L}) or Unlike/Charged pairs (R^{U}/R^{C})

$$\frac{R^{U}}{R^{L}} \simeq 1 + \frac{\sin^{2}\theta}{1 + \cos^{2}\theta} \cos(2\phi_{0}) (G^{U} - G^{L}) \qquad \frac{R^{U}}{R^{C}} \simeq 1 + \frac{\sin^{2}\theta}{1 + \cos^{2}\theta} \cos(2\phi_{0}) (G^{U} - G^{C})$$

- DRs are fitted by $\frac{R^U}{R^{L(C)}} = a\cos(2\phi_0) + b,$
- $A_{UL(C)} = \frac{a}{h}$ represents the asymmetries of interest.

Fit to DR in Different z Bin

Only three symmetrized z-bins, due to the limited statistics.

Z-dependence Asymmetries

- Data show nonzero A_{UL} and A_{UC}.
- The MC simulation does not include the Collins effect. Zero asymmetries in MC indicate that detector effects are reduced to a negligible level.

R_{mis} Correction

- Mis-combination problem: without identifying jets, pions from the same quark fragmentation may be combined. This dilutes the asymmetries of interest.
- Estimation of the combined rate R_{mis} relies on MC. (Pythia 6.2)
- Measured Asymmetries are corrected by

$$A^{corr.} = \frac{A^{mea.}}{(1 - R_{mis})}$$

Statistical uncertainties only!

Zero Test in Data

• Check efficiency differences of π^+ and π^- , make sure DR can cancel detection effects.

Mixed events

 Combine two π from different events in data. Zero asymmetry is expected.

Single Spin Asymmetry(SSA)

- > Thrus axis is assumed as the direction of the initial quark
- With unpolarized beam, zero SSA is expected. To cancel efficiencies, R^{data}/R^{MC} was used.

Collins Asymmetries in Different Q²

- Statistical uncertainties only.
- The measured Collins asymmetries at BESIII is larger than those at higher Q² at B factories.
- This trend accords with predictions in PRD 88. 034016 (2013).

Theoretical prediction PRD 88. 034016 (2013)

Summary and Outlook

- Collins effects measurement is implemented using BESIII data @3.65GeV.
 - Nonzero Collins asymmetries were observed.

Outlook

- Potential of data above charm threshold can be explored.
- BESIII plans to take more data \sqrt{s} <3.6GeV, which will improve precision of this measurement.

Acknowledgement

 We would like to thank Jianping Ma, Feng Yuan, Peng Sun, Xiaodong Jiang and D. Boer for helpful discussions!

Thanks for your attention!