A dual H and D Polarized Target for measurements at COSY (Cooler SYnchrotron)

Ciullo G.*, M. Statera, A. Nass, G. Tagliente and P. Lenisa program in the mainframe of

Bejing, 2014 october 20-24

Outline

The H polarized target of PAX experiment at COSY.

 Performances and present status.

What comes next (upgrading in program)
 p H longitudinal!
 p D ? and ... H/D target

Outline

- The H polarized target of PAX experiment at COSY.
- Performances and present status.

What comes next (upgrading in program)
 p H longitudinal!
 p D ? and ... H/D target

Physics motivations (p_{bar} polarized)

New key to get clearest insight in structure of the nucleon

- Direct measurement of the transversity distribution of the valence quarks in the proton,
- test of the predicted opposite sign of the Sivers-function, related to the quark distribution inside a transversely polarized nucleon in Drell—Yan as compared to semi-inclusive deep-inelastic scattering,
- measurement of the **moduli** and the **relative phase** of the time-like electric and magnetic form factors $G_{E,M}$ of the proton

Information on proposal and results of PAX collaboration: http://collaborations.fz-juelich.de/ikp/pax/

Next future

A tool to study p-p spin dependent observables, and p-d spin dependent observables (the 3 body system)

A new window p_{bar} p and p_{bar} d polarized cross sections

P. Lenisa talk on 21st October

future

Spin Filtering test on p: pictorial view

An un-polarized beam by multiple passage through a polarized target, due to different cross-section for parallel ($\uparrow \uparrow$) and antiparallel ($\downarrow \uparrow$) spin alignment, becomes polarized, while the intensity decreases.

Spin Filtering test on p: pictorial view

An un-polarized beam by multiple passage through a polarized target, due to different cross-section for parallel ($\uparrow \uparrow$) and antiparallel ($\downarrow \uparrow$) spin alignment, becomes polarized, while the intensity decreases.

Polarized beams by spin-filtering

Interaction between a polarized beam (P) spin $\frac{1}{2}$ and a polarized target (Q) spin $\frac{1}{2}$

$$\sigma_{tot} = \sigma_0 + \sigma_1(\mathbf{P} \bullet \mathbf{Q}) + \sigma_2(\mathbf{P} \bullet \mathbf{k})(\mathbf{Q} \bullet \mathbf{k})$$

k is the beam direction.

For initially equally populated spin states: $m_s = \frac{1}{2}$ and $m_s = -\frac{1}{2}$

Transverse case

$$\sigma_{tot\pm} = \sigma_0 \pm \sigma_1 Q$$

Longitudinal case

$$\sigma_{tot\pm} = \sigma_0 \pm (\sigma_1 + \sigma_2)Q$$

- + for $(\uparrow \uparrow)$ beam and target spins parallel
 - for (↑ ↓) beam and target spins anti-parallel

Intensity of spin-up and spin-down decreases with different time constants

Polarization build-up

$$P = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}}$$

along the quantization axis

$$\frac{Q}{Q}$$

$$P(t) = \tanh\left(\frac{t}{\tau}\right)$$

 $\frac{dP}{dt} \approx \frac{1}{\tau}$

build-up of beam polarization

Transverse case (respect to k)

$$\tau_{\perp} = \frac{1}{\widetilde{\sigma}_1 \cdot Q \cdot d_t \cdot f}$$

Longitudinal case (respect to *k*)

$$\tau_{\parallel} = \frac{1}{(\tilde{\sigma}_1 + \tilde{\sigma}_2) \cdot Q \cdot d_t \cdot f}$$

where:

 d_t is the areal density of the target atoms cm⁻²

f is the revolution frequency of the beam Hz

 $\tilde{\sigma}$ are effective cross sections: $\tilde{\sigma} \equiv \sigma$

if scattering angle is less than acceptance angle (Θ_{acc}) in the IP.

Polarization studies at COSY (⊥ case)

$$\frac{dP}{dt} \approx \frac{1}{\tau_{\perp}}$$

• Measuring polarization build up we measure τ_{\perp} .

$$\tau_{\perp} = \frac{1}{\tilde{\sigma}_1 \cdot Q \cdot d_t \cdot f}$$

• Measuring the <u>target polarization</u> (Q), its <u>target areal density</u> (d_t) and the beam revolution frequency (f), we measure the effective polarizing cross section ($\tilde{\sigma}_1$).

COSY set up for σ_1

Ingredients for spin-filtering at COSY

- COSY ring requirements
 - High beam lifetime of the beam
 - long P lifetime of the beam
 - precise measurement of acceptance in the IP
 - stable condition of the beam and monitoring.

PAX IP

- FOM of the Target = $Q^2 d_t$, stable condition,
- · Law holding field, unperturbed stored beam optics.
- pump down feeded gas from the cell and the near ring pipes
- Spin Flippers
 - In order to reduce systematic errors in measurements.
- Beam Polarimeter
 - Measurements of beam polarization (P).

All requirements fulfilled: P. Lenisa talk on 21st October

Outline

The H polarized target of PAX experiment at COSY.

Performances
 and present status.

What comes next (upgrading in program)
 p H longitudinal!
 p D ? and ... H/D target

PAX H polarized target

The polarized target: 1 state injection - low holding field (10 G)

Target Cell

Production of a polarized atomic beam by an ABS

Increase of the target areal density by a storage cell

Breit—Rabi Polarimeter

High frequency transitions

Sextupoles

Chopper

QMA

SFT (H) MFT/WFT

SFT (D) (H+D)

Analysis of (

SFT for H MFT for H

Pola

PAX IT Holding fields (10 G)

Spin filtering in transverse case, quantization axis, defined by the top and bottom, Holding field coils.

HF + (Holding Field pos y) and **HF** - (Holding Field neg y).

The intensity of the field is 10 G.

Almost perfect compensation coils during the powering of the holding field coils: no transverse displacement of the beam position could be detected by BPM.

Performance of the Target (during runs)

From polarization build-up: σ_1

Good agreement confirms that spin-filtering is well described, contribution from p-p scattering from SAID database.

Summary: performance and status

- PAX successfully completed the spin dependent σ_1 measurements at COSY on p useful for a deep understanding of the spin filtering process.
- Results on p-p interaction are in good agreement with the theory.
- OVER ALL the result demonstrates that procedure and apparatus involved are under control.
- This result still doesn't alleviate the lack on spindependent cross section on **p-p**_{bar} interactions.

Outline

• The H polarized target of PAX experiment at COSY.

• Performances and present status.

What comes next (upgrading in program)
 p H longitudinal!
 p D ? and ... H/D target

Longitudinal Polarization build-up

The polarization

$$P = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}}$$

along the quantization axis

 $\frac{Q}{Q}$

$$P(t) = \tanh\left(\frac{t}{\tau}\right)$$

$$\frac{dP}{dt} \approx \frac{1}{\tau}$$

build-up of beam polarization

Transverse case (respect to k)

$$\tau_{\perp} = \frac{1}{\widetilde{\sigma}_1 \cdot Q \cdot d_t \cdot f}$$

Longitudinal case (respect to k)

$$\tau_{\parallel} = \frac{1}{(\tilde{\sigma}_1 + \tilde{\sigma}_2) \cdot Q \cdot d_t \cdot f}$$

conclusive test for spin filtering

COSY set up for longitudinal spin filtering

Details in P. Lenisa talk on 21st October

H/D following PAX plans

The polarized target as to work with H and ..(D):

Target Cell

RF transition for H HFT manipulation already used

Required RF transition for D HFT manipulation

SFT for H/DMFT for H

BRP new hardware in vacuum H/D dual Cavity

 σ transition Δm_F = 0: SFT2-4

 π transition $\Delta m_F = \pm 1$: SFT1-4

E. Steffens Proposal and prototype @ FE

Ex situ tuning and characterization

Check on 45° B_{rf} and adiabatic transition conditions.

Dual SFT cavity *in situ* commissioning of H

TARGET is back for H longitudinal runs.

20141009 BRP Calibration

em13r12c14 = 0.935 + 0.009

em13r23c14 = 0.974 + 0.010em23r12c14 = 0.010 + 0.007

One

single

scan

es14 = 0.832 + 0.005

es24 = 0.981 + 0.012

H/D dual cavity long term operation

New control software of BRP for

Conclusion - close plans (2015-2016)

The H target performed very nicely during the σ_1 measurements (transverse case).

In the PAX program was require an easy switchable H/D target.

Following the program,

We will continue for the D commissioning.

The H/D target is interesting on other programs under study at COSY →

A. Kacharava 23rd oct.

Extension on p_(bar) - D_{\(\tau\)} spin filtering

arXiv:1307.3415 [nucl-th] July 2013

Elastic $\bar{p}d$ scattering and total $\bar{p}d$ cross sections revisited

Spin-dependence in p-p_{bar} elastic and annihilation cross sections unknow.

NN model A Jülich

NN model D Jülich

NN ZT model

Sizeable difference between models, Larger (30 %) with old Nijmegen NN PWA (S.G. Salnikov Nucl.Phys.A 874 (2012)98

Time reversal corresponds to flipping of the spin of the proton beam or deuteron target alignment. The block with the green background represents the reaction in the "time-forward" world and the others represent the same reaction in the "time-reversed" world.

http://apps.fz-juelich.de/pax/paxwiki/index.php/Test_of_Time-Reversal_Invariance_at_COSY_(TRIC)

D. Eversheim talk on 20 oct.

Y.ry Uzikov 20 oct.

Accumulation Cell

The (openable) storage cell

- Storage cell increases target areal density up to 10¹⁴ atoms/cm²
- Storage cell walls should suppress recombination and depolarization

- Openable storage cell to allow the uncooled AD beam to pass and (*) for higher intensity at COSY
- Teflon foil walls to detect low energy recoils and suppress recombination and depolarization
- Fixed cell used in the COSY experiments due to problems with the density in the

Openable Cell? ... less loss of stored beam

First prototype worked nicely for the Target commissioning, but on COSY the target -... stressed.

<u>Construction and test</u> <u>in air by He sniffer :</u> leaks < 1%.

1 calc, not well cond, 2 conditioned, 3 IMR OFF, 4 IMR Re-oN