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A Physical Sum Rule for Proton Spin 

Jaffe-Manohar sum rule and its physical significance A LaMET Approach Summary

Jaffe-Manohar sum rule for proton spin

The proton is a bound state of
quarks and gluons. For bound
state gluons, there is no
physically meaningful notion of
spin or orbital angular
momentum (OAM).

A. Accardi et al., arXiv:1212.1701 [nucl-ex].
However,

• In high energy scattering experiments, quarks and gluons inside the fast-moving
proton are almost interaction-free. The proton structure can be described by the
Feynman parton model;

• With “free” partons one can talk about physical observables like the gluon spin
and OAM, and come up with a naive spin sum rule:

Sz =
1
2

=
1
2
�⌃(µ) +�G(µ) +�Lz

q(µ) +�Lz
g(µ) . (1)

• How to justify this sum rule in quantum field theory?

Light-cone 2014 Yong Zhao

In	
  high	
  energy	
  scattering,	
  
the	
  proton	
  is	
  travelling	
  at	
  
almost	
  the	
  speed	
  of	
  light.	
  	
  

With	
  free	
  quarks	
  and	
  gluons,	
  one	
  can	
  talk	
  about	
  physically	
  
meaningful	
  observables	
  like	
  the	
  gluon	
  spin	
  and	
  orbital	
  angular	
  
momentum	
  (OAM).	
  

A naïve spin sum rule: 

1
2
= ΔΣ(µ)+ΔLq (µ)+ΔG(µ)+ΔLg(µ)

Image credit: A. Accardi et al., arXiv: 1212.1701 [nucl-ex] 

The	
  parton	
  model:	
  The	
  proton	
  
can	
  be	
  regarded	
  as	
  a	
  beam	
  of	
  
almost	
  interaction-­‐free	
  quark	
  
and	
  gluon	
  partons.	
  	
  
	
  



A Physical Sum Rule for Proton Spin 
Jaffe-Manohar form of the QCD AM (1989): 

	
  
�  The	
  parton	
  spin	
  and	
  OAM	
  are	
  deBined	
  to	
  be	
  
proton	
  matrix	
  elements	
  of	
  the	
  free-­‐Bield	
  
operators;	
  

�  Light-­‐cone	
  coordinates	
  x±=(x0±x3)/√2	
  and	
  
gauge	
  A+=0	
  are	
  used,	
  and	
  Ei=Fi+.	
  

J
!"
= d3xψ †

!
Σ
2
ψ∫ + d3xψ †!x × (−i

!
∇)ψ∫

+ d3x
!
Ea ×

!
Aa∫ + d3x Ei

a (
!x ×
!
∇)Ai,a∫



A Physical Sum Rule for Proton Spin 

� Motivations: 

�  Problems: 

1.  The	
  free-­‐Bield	
  operators	
  allow	
  the	
  parton	
  
observables	
  to	
  be	
  expressed	
  as	
  simple	
  addition	
  of	
  
the	
  physical	
  properties	
  of	
  quarks	
  and	
  gluons;	
  

2.  The	
  gluon	
  polarization	
  ΔG	
  in	
  this	
  expression	
  can	
  be	
  
probed	
  in	
  high	
  energy	
  scattering	
  experiments	
  
(RHIC,	
  JLab,	
  EIC,	
  …).	
  

1.  Except	
  for	
  the	
  quark	
  spin,	
  all	
  the	
  operators	
  are	
  
gauge	
  dependent;	
  

2.  The	
  Jaffe-­‐Manohar	
  expression	
  must	
  be	
  Bixed	
  in	
  the	
  
light-­‐cone	
  gauge.	
  



A Physical Sum Rule for Proton Spin 

How does the Jaffe-Manohar expression 
acquire physical meaning? 
�  In	
  free	
  electromagnetic	
  theory,	
  the	
  Bields	
  are	
  
transverse.	
  E×A	
  (E=Fi0)	
  is	
  regarded	
  as	
  the	
  
photon	
  spin	
  (for	
  more	
  precise	
  discussion,	
  see	
  van	
  
Enk	
  and	
  Nienhuis,	
  1994),	
  and	
  its	
  projection	
  
along	
  the	
  propagation	
  direction	
  (z)	
  can	
  be	
  
measured	
  in	
  experiments	
  (Beth,	
  1936);	
  

�  But	
  for	
  the	
  Bields	
  generated	
  by	
  a	
  static	
  
charge,	
  E	
  is	
  longitudinal,	
  and	
  the	
  meaning	
  of	
  
E×A	
  as	
  photon	
  spin	
  is	
  not	
  clear.	
  



A Physical Sum Rule for Proton Spin 
Weiszacker-Williams (WW) approximation: 
�  If	
  the	
  charge	
  moves	
  at	
  inBinite	
  momentum,	
  the	
  transverse	
  EM	
  
Bields	
  dominate	
  and	
  can	
  be	
  regarded	
  as	
  free	
  radiation	
  
(Jackson,	
  CED).	
  Again	
  E×A	
  can	
  represent	
  the	
  photon	
  spin.	
  

1 Introduction

The electric (and magnetic) field pattern from a single charged particle can get very complicated at relativis-
tic velocities, and diverge a lot from the non-relativistic case with lines radially outward. In this lab we will
use a program (Radiation 1.0) to investigate the behaviour of the electric field from a charged particle at
different velocities in circular motion, linear oscillation and instant change of velocity. Clasically, electro-
magnetic radiation is emitted from an accelerated charged particle. These motions are reminiscent of several
physical processes that cause radiation: braking radiation (bremsstrahlung), dipole radiation, cyclotron and
synchrotron radiation.

Figure 1: A charged particle at rest (left panel) and moving at v = 0.9c (right panel) seen in the laboratory
frame. In the stationary case we have uniformly distributed field lines, spherically outward. In the relativis-
tic case, however, a uniform distribution of field lines (in the frame of the particle) is transformed into a
nonuniform distribution of straight field lines - in the shape of an oblate spheroid pattern orthogonal to the
direction of motion.

2 Some theory

As shown in Fig. 1, a charged particle at rest or uniformly moving at non-relativistic velocities (in the
laboratory frame) has a simple electric field with field lines radially outward from the current position of the
charge. In the frame of the particle the field lines are always uniformly distributed, but as seen in the lab
frame, we get the following transformation law

tan(θ ′) = γtan(θ) (1)

where θ is the angle of a field line with the direction of motion in the charge’s rest frame and θ ’ is the
same angle as viewed from the laboratory frame and γ and β are defined as

γ =
(

1− (v/c)2
)−

1
2 =

(

1−β 2
)−

1
2 (2)

β =
v
c

(3)

2

Image 
credit: 
Magnus 
Gålfalk 
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�  Likewise,	
  as	
  the	
  proton	
  moves	
  at	
  
extremely	
  large	
  momentum,	
  the	
  gluon	
  
Bields	
  can	
  also	
  be	
  regarded	
  as	
  free	
  
radiation	
  in	
  the	
  WW	
  approximation,	
  and	
  
thus	
  E×A	
  can	
  represent	
  the	
  gluon	
  spin	
  
with	
  a	
  physical	
  gauge;	
  

� A	
  physical	
  gauge	
  is	
  a	
  gauge	
  that	
  does	
  not	
  
affect	
  the	
  transverse	
  component	
  of	
  the	
  
gluon	
  Bield.	
  



A Physical Sum Rule for Proton Spin 

�  In	
  short,	
  E×A	
  can	
  be	
  regarded	
  as	
  the	
  gluon	
  
spin	
  if	
  we	
  work	
  in	
  

�  This	
  is	
  equivalent	
  to	
  the	
  deBinition	
  in	
  the	
  
light-­‐cone	
  gauge	
  and	
  coordinates	
  because:	
  

�  Similar	
  arguments	
  also	
  apply	
  to	
  the	
  OAM	
  
operators.	
  

The infinite momentum frame (IMF) Physical gauge 

1.  Fi0	
  è	
  Fi+	
  in	
  the	
  IMF	
  limit;	
  
2.  The	
  physical	
  gauge	
  condi<ons,	
  if	
  not	
  all,	
  flow	
  into	
  

the	
  light-­‐cone	
  gauge	
  A+=0	
  in	
  the	
  IMF	
  limit	
  (HaFa,	
  
Ji,	
  and	
  Zhao,	
  2014);	
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�  Therefore,	
  we	
  establish	
  the	
  Jaffe-­‐Manohar	
  
form	
  of	
  spin	
  sum	
  rule	
  as	
  physical,	
  and	
  will	
  
try	
  to	
  obtain	
  it	
  in	
  lattice	
  QCD.	
  

But hold on…, it poses great difficulties for practical 
lattice calculations! 
•  Can’t	
  Bix	
  light-­‐cone	
  time	
  and	
  gauge	
  on	
  Euclidean	
  lattice;	
  
•  Lattice	
  can	
  only	
  calculate	
  with	
  Binite	
  momentum	
  that	
  is	
  
much	
  smaller	
  than	
  the	
  cut-­‐off	
  π/a.	
  



The LaMET Approach 

LaMET	
  is	
  an	
  effective	
  theory	
  that	
  allows	
  direct	
  
calculation	
  of	
  parton	
  properties	
  in	
  lattice	
  QCD	
  
(Ji,	
  2014);	
  
�  Consider	
  a	
  quasi-­‐observable	
  ~O	
  which	
  depends	
  on	
  
the	
  hardon	
  momentum	
  P	
  and	
  can	
  be	
  directly	
  
calculated	
  in	
  lattice	
  QCD;	
  

�  The	
  WW	
  approximation	
  of	
  ~O	
  in	
  the	
  IMF	
  limit	
  is	
  a	
  
parton	
  observable	
  O	
  by	
  construction;	
  

�  ~O	
  is	
  equivalent	
  to	
  O	
  by	
  taking	
  the	
  IMF	
  limit	
  before	
  
UV	
  regularization,	
  while	
  for	
  lattice	
  calculation	
  one	
  
needs	
  to	
  impose	
  UV	
  regularization	
  Birst.	
  Their	
  
difference	
  is	
  a	
  matter	
  of	
  order	
  of	
  limits.	
  



The LaMET Approach 

In	
  standard	
  effective	
  theory	
  set-­‐up,	
  
	
  
	
  
	
  
�  Taking	
  the	
  IMF	
  limit	
  does	
  not	
  change	
  the	
  IR	
  
and	
  collinear	
  divergence,	
  and	
  thus	
  O	
  fully	
  
captures	
  the	
  IR	
  and	
  collinear	
  divergence	
  of	
  
O~,	
  so	
  Z	
  is	
  completely	
  perturbative;	
  

�  Higher	
  order	
  terms	
  are	
  suppressed	
  by	
  
powers	
  of	
  1/(Pz)2	
  (Pz	
  must	
  be	
  large	
  enough);	
  

!Ο(Pz /Λ) = Z(Pz /Λ,µ /Λ)O(µ)+ c2
(Pz )2

+
c4
(Pz )4

+...



The LaMET Approach 

� A	
  possible	
  choice	
  of	
  the	
  quasi-­‐observables	
  
(Chen	
  et	
  al.,	
  2008):	
  

	
  
	
  	
  	
  	
  where	
  

J
!"
' = d3xψ †

!
Σ
2
ψ∫ + d3xψ †!x × (−i

!
∇− g

!
A// )ψ∫

+ d3x
!
Ea ×

!
A⊥
a∫ + d3x Ei

a (
!x ×
!
∇)A⊥

i,a∫

∂iA j,a
// −∂

jA//
i,a − gf abcAi,b

//A//
j,c = 0

∂iAi
⊥ − ig[A

i,Ai
⊥ ]= 0



The LaMET Approach 

� Under	
  a	
  gauge	
  transformation,	
  

	
  
�  So	
  that	
  the	
  expression	
  is	
  gauge	
  invariant.	
  
�  The	
  physical	
  meaning	
  of	
  the	
  nonlocal	
  
expression	
  is	
  not	
  clear,	
  but	
  E×Aperp	
  has	
  
been	
  proven	
  to	
  be	
  equivalent	
  to	
  the	
  gluon	
  
spin	
  in	
  the	
  Jaffe-­‐Manohar	
  expression	
  in	
  
the	
  IMF	
  limit	
  (Ji,	
  Zhang,	
  Zhao,	
  2013).	
  

!
A⊥ →U(x)

!
A⊥U

†(x),
!
A// →U(x)

!
A//U

†(x)+ i
g
(
!
∇U(x))U †(x).



Matching conditions 

A “renovated sum rule”: 
 
 
In the LaMET framework: 

1
2
=
1
2
Δ !Σ(µ,Pz )+Δ !G(µ,Pz )+Δ !Lq (µ,P

z )+Δ !Lg(µ,P
z )

Δ !Σ(µ,Pz ) = ΔΣ(µ),

Δ !G(µ,Pz ) = zqgΔΣ(µ)+ zggΔG(µ)+O(
M 2

Pz
2 ),

Δ !Lq (µ,P
z ) = PqqΔLq (µ)+PgqΔLg(µ)+ pqqΔΣ(µ)+ pgqΔG(µ)+O(

M 2

Pz
2 ),

Δ !Lg(µ,P
z ) = PqgΔLq (µ)+PggΔLg(µ)+ pqgΔΣ(µ)+ pggΔG(µ)+O(

M 2

Pz
2 ).



Matching conditions 
Calculation	
  of	
  the	
  matching	
  coefBicients:	
  
	
  
	
  
�  	
  Compare	
  the	
  quark	
  and	
  gluon	
  matrix	
  
elements	
  of	
  E×Aperp	
  and	
  E×A	
  in	
  the	
  light-­‐
cone	
  gauge.	
  

�  	
  To	
  guarantee	
  the	
  gauge	
  invariance,	
  we	
  
choose	
  dimensional	
  regularization	
  with	
  
d=4-­‐2ε	
  and	
  the	
  MS-­‐bar	
  scheme,	
  and	
  the	
  
external	
  states	
  are	
  onshell	
  and	
  massless.	
  

Δ !G(µ,Pz ) = zqgΔΣ(µ)+ zggΔG(µ)+O(
M 2

Pz
2 )

Ji, Zhang, Zhao, arXiv: 1409.6329 



Matching conditions 

� At	
  tree	
  level,	
  
� At	
  one-­‐loop	
  level,	
  consider	
  the	
  following	
  
Feynman	
  diagrams:	
  

Sg =

∫
d3xE⃗a × A⃗a

⊥ (B1)

includes two- and three-gluon vertices as shown in Fig. 1, and their Feynman rules are:

δabϵijm(ik
0gjµgmν

⊥ − ik0gjνgmµ
⊥ − ikjg0µgmν

⊥ + ikjg0νgmµ
⊥ ) , (B2)

gϵijmf
abc(g0µgjνgmρ

⊥ − g0µgjρgmν
⊥ + g0νgjρgmµ

⊥ − g0νgjµgmρ
⊥ + g0ρgjµgmν

⊥ − g0ρgjνgmµ
⊥ ) , (B3)

where, i, j,m = 1, 2, 3, and gµν⊥ (k) is a projection operator that projects any four-vector to
its transverse components with respect to kµ:

gµν⊥ (k) = gµν − n · k
nµkν + nνkµ

k⃗2
+

kµkν

k⃗2
+

nµnνk2

k⃗2
, (B4)

with nµ = (1, 0, 0, 0).

k k

FIG. 1: Vertices from the gluon spin operator.

1.

To extract out the zqg factor, we need to calculate the matrix element of Sg in a free
quark state, as shown in Fig. 2.

FIG. 2: Matrix element of Sg in a free quark state.

This diagram gives

⟨p, s
∣∣Sz

g

∣∣ p, s⟩(1) = ū(p)

∫
d4k

(2π)4
(−igγβτa)

i

/p− /k
iDβν(k)

×[ik0(gµ1gν2⊥ − gµ2gν1⊥ )− igµ0(k1gν2⊥ − k2gν1⊥ )]iDµα(k)(−igγατa)u(p)

+ū(p)

∫
d4k

(2π)4
(−igγβτa)

i

/p− /k
iDβν(k)

×[ik0(gµ1⊥ gν2 − gµ2⊥ gν1) + igν0(k1gµ2⊥ − k2gµ1⊥ )]iDµα(k)(−igγατa)u(p) ,

(B5)

8

where
1

ϵ′
=

1

ϵ
− γE + ln 4π , (B11)

and µ is the renormalization scale.
According to Ref. [22], the corresponding IMF (or light-cone) matrix element is

⟨p, s
∣∣∣∣

∫
d3x

(
E⃗a × A⃗a

)3∣∣∣∣
A+=0

∣∣∣∣ p, s⟩
(1) =

αSCF

4π

[
3

ϵ′UV

−
3

ϵ′IR

]
⟨p, s|Σ3|p, s⟩tree . (B12)

2.

To extract out the matching factor zgg, we need to calculate the matrix elements of Sg in
the free gluon state. The relevant Feynman diagrams are shown in Fig. 3.

(a) (b)

(c) (d)

+ more self-energy diagrams.

FIG. 3: Diagrams contributing to one-loop gluon matrix element of gluon spin.

Fig. 3a gives

〈
k,λ

∣∣Sz
g

∣∣ k,λ
〉(1)
a

= ϵ∗aν (k,λ)

∫
d4q

(2π)4
(−gfacd)

[
gνλ

′

(2k − q)ρ
′ − gνρ

′

(k + q)λ
′

+ gρ
′λ′

(2q − k)ν
]

×iDρ′β(q)[iq
0(g1αg2β⊥ − g2αg1β⊥ )− ig0α(q1g2β⊥ − q2g1β⊥ )− α ↔ β]iDρα(q)

×(−gf bdc)
[
gµλ(2k − q)ρ + gµρ(−k − q)λ + gρλ(2q − k)µ

]

×iDλλ′(k − q) ϵbµ(k,λ) , (B13)

where ϵaµ(k,λ) is the polarization vector of a gluon with color a and polarization λ. The
momentum of the gluon is along the z direction, i.e., kµ = (k0, 0, 0, k0). For physical
polarizations, the Lorentz indices µ and ν are restricted to run over 1, 2.

We will encounter the same types of integrals in the calculation of the Feynman diagram
in Fig. 2, but the structure of the integrand is much more complicated in this case. Here we

10

Δ !G tree = ΔG tree.



Matching conditions 

�  The	
  result	
  

�  The	
  matrix	
  element	
  of	
  E×A	
  in	
  the	
  light-­‐
cone	
  gauge	
  is	
  

Δ !G1-loop =
αSCF

4π
[5
3
1
ε 'UV

+
4
3
ln Pz

2

µ 2
−
3
ε 'IR

+ R1]ΔΣ
tree

+
αS

4π
[
4CA − 2nf

3
1
ε 'UV

−
11CA − 2nf

3
1
ε 'IR

+CA (
7
3
ln Pz

2

µ 2
+ R2 )]ΔG

tree

ΔG1-loop =
αSCF

4π
[ 3
ε 'UV

−
3
ε 'IR
]ΔΣtree

+
αS

4π
[
11CA − 2nf

3
1
ε 'UV

−
11CA − 2nf

3
1
ε 'IR
]ΔG tree



Matching conditions 
�  Anomalous	
  dimension	
  different,	
  but	
  IR	
  
divergence	
  the	
  same!	
  

�  Subtract	
  the	
  UV	
  poles,	
  and	
  replace	
  the	
  IR	
  
poles	
  with	
  ΔG	
  

�  Since	
  

Binally	
  

Δ !G1-loop =
αSCF

4π
(4
3
ln Pz

2

µ 2
+ R1)ΔΣ

tree +
αSCA

4π
(7
3
ln Pz

2

µ 2
+ R2 )ΔG

tree +ΔG1-loop

Δ !G ≈ ΔG tree +Δ !G1-loop, ΔG ≈ ΔG tree +ΔG1-loop

Δ !G =
αSCF

4π
(4
3
ln Pz

2

µ 2
+ R1)ΔΣ+[1+

αSCA

4π
(7
3
ln Pz

2

µ 2
+ R2 )]ΔG



Matching conditions 

�  The	
  matching	
  coefBicients	
  

	
  
�  Similarly,	
  we	
  obtain	
  

zqg(µ / P
z ) = αSCF

4π
(4
3
ln Pz

2

µ 2
+ R1), zgg(µ / P

z ) =1+αSCA

4π
(7
3
ln Pz

2

µ 2
+ R2 ).

Pqq =1+
αSCF

4π
(−2 ln Pz

2

µ 2
+ R3), Pgq = 0,

Pqg =
αSCF

4π
(2 ln Pz

2

µ 2
− R3), Pgg =1,

pqq =
αSCF

4π
(−1
3
ln Pz

2

µ 2
+ R4 ), pgq = 0,

pqg =
αSCF

4π
(− ln Pz

2

µ 2
− R1 − R4 ), pqq =

αSCF

4π
(− 7
3
ln Pz

2

µ 2
− R2 ).



Matching conditions 

�  Finite	
  constants:	
  

Next step: 
We	
  need	
  to	
  perform	
  a	
  similar	
  matching	
  
procedure	
  in	
  lattice	
  QCD	
  (Capitani,	
  2003)	
  to	
  
extract	
  the	
  physical	
  result	
  from	
  simulations.	
  

R1 =
8
3
ln2− 64

9
, R2 =

14
3
ln2−121

9
,

R3 = −4 ln2+
28
3
, R4 = −

2
3
ln2+13

9
.

The finite constants are important because they are different in lattice 
renormalization and need to be precisely calculated. 



Conclusion 

� We	
  justify	
  the	
  physical	
  meaning	
  of	
  the	
  
Jaffe-­‐Manohar	
  sum	
  rule	
  for	
  proton	
  spin;	
  

�  The	
  parton	
  contributions	
  in	
  the	
  Jaffe-­‐
Manohar	
  sum	
  rule	
  can	
  be	
  related	
  to	
  
certain	
  quasi-­‐observables	
  through	
  
perturbative	
  matching	
  conditions	
  in	
  
LaMET;	
  

� We	
  obtain	
  the	
  matching	
  condition	
  for	
  
proton	
  spin	
  content	
  at	
  one-­‐loop	
  order.	
  



Back-up slides 



Lattice QCD 

� Euclidean Space 
 
� Discretization 

� Derivatives 

S. Capitani / Physics Reports 382 (2003) 113–302 127

for nonperturbative renormalization, when this is possible). We will try to explain how to perform
this kind of calculations in the rest of the review.

4. Discretization

Lattice calculations are done in Euclidean space. A new time coordinate is introduced through a
Wick rotation from Minkowski space to imaginary (Euclidean) times:

xE0 = ix
M
0 : (4.1)

In momentum space this corresponds to kE0 = −ikM0 , so that the Fourier transforms in Euclidean
space are de!ned by the same phase factor. The reason for working with imaginary times is that
the imaginary unit in front of the Minkowski-space action becomes a minus sign in the Euclidean
functional integral,

eiSM → e−SE ; (4.2)

and the lattice !eld theory in Euclidean space acquires many analogies with a statistical system.
The path integral of the particular quantum !eld theory under study becomes the partition function
of a statistical system. The transition to imaginary times brings a close connection between !eld
theory and statistical physics which has many interesting facets. In particular, when the Euclidean
action is real and bounded from below one can see the functional integral as a probability measure
weighted by a Boltzmann-like distribution e−SE . It is this feature that allows Monte Carlo methods
to be used. 6 Furthermore, on a Euclidean lattice of !nite volume the path integral is naturally well
de!ned, since the measure contains only a !nite number of variables and the exponential factor
gives an absolutely convergent multi-dimensional integral. One can then generate con!gurations
with the appropriate probability distribution sampling the !eld con!guration space with Monte Carlo
techniques. This is the practical basis of Monte Carlo simulations.
From now on we will work in the Euclidean space in four dimensions, with metric (1,1,1,1),

and we will drop all Euclidean subscripts from lattice quantities, so that x0 is for example the time
component after the Wick rotation. The Dirac matrices in Euclidean space satisfy an anticommutation
relation with g!" replaced by #!":

{$!; $"}= 2#!" ; (4.3)

and they are all hermitian:

($!)† = $! : (4.4)

The Euclidean $5 matrix is de!ned by

$5 = $0$1$2$3 ; (4.5)

6 However, when the action is complex, like in the case of QCD with a !nite baryon number density, this is not
possible. It is this circumstance that has hampered progress in the lattice studies of !nite density QCD.
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Fig. 4. A two-dimensional projection of a lattice. A site, a link and a closed loop are also shown.

it is also hermitian, and satis!es (!5)2 = 1. The relation between Dirac matrices in Minkowski and
Euclidean space is

!E0 = !M0 ; !Ei =−i!Mi : (4.6)

This can be inferred from the kinetic term of the Dirac action in the functional integral:

exp{i " !M" 9M"  } → exp{− " !E"9E" } : (4.7)

The explicit Euclidean Dirac matrices in the chiral representation are given in Appendix A.
We want to construct !eld theories on a hypercubic lattice. This is a discrete subset of the

Euclidean spacetime, where the sites are denoted by x" = an" (with n" integers). We will work in
this review only with hypercubic lattices, where the lattice spacing is the same in all directions.
A two-dimensional projection of such a (!nite) lattice is given in Fig. 4. For convenience we will
sometimes omit to indicate the lattice spacing a, that is we will use units in which a = 1. The
missing factors of a can always be reinstated by a naive dimensional counting.
In going from continuum to lattice actions one replaces integrals with sums,∫

d4x → a4
∑

x

; (4.8)

where on the right-hand side x means now sites: x = an. 7 Lattice actions are then written in terms
of sums over lattice sites. The distance between neighboring sites is a, and this minimum distance
induces a cuto# on the momentum space modes, so that a acts as an ultraviolet regulator. The range
of momenta is thus restricted to an interval of range 2#=a, called the !rst Brillouin zone, and which
can be chosen to be

BZ =
{
k: − #

a
¡k"6

#
a

}
: (4.9)

7 We use in general the same symbols for continuum and lattice quantities when no confusion can arise, except for
lattice derivatives. For them we will use special symbols.
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BZ is the region of the allowed values of k, and is the domain of integration in Fourier space. For
a lattice of !nite volume V = L0L1L2L3 the allowed momenta in the !rst Brillouin zone become a
discrete set, given by

(kn)! =
2"
a

n!

L!
; n! =−L!=2 + 1; : : : ; 0; 1; : : : ; L!=2 ; (4.10)

and so in principle one deals with sums also in momentum space. However, in in!nite volume the
sums over the modes of the !rst Brillouin zone become integrals:

1
V

∑

k

→
∫ "=a

−"=a

dk0
2"

∫ "=a

−"=a

dk1
2"

∫ "=a

−"=a

dk2
2"

∫ "=a

−"=a

dk3
2"

: (4.11)

The one-sided forward and backward lattice derivatives (also known as right and left derivatives)
can be written as

∇! (x) =
 (x + a!̂)−  (x)

a
; (4.12)

∇?
!  (x) =

 (x)−  (x − a!̂)
a

; (4.13)

where !̂ denotes the unit vector in the ! direction. It is easy to check that

(∇!)† =−∇?
! ; (4.14)

(∇?
! )

† =−∇! ; (4.15)

that is they are anti-conjugate to each other. Therefore in a lattice theory that is supposed to have
a hermitian Hamiltonian only their sum, ∇! +∇?

! , which is anti-hermitian, can be present. It acts
as a lattice derivative operator extending over two lattice spacings:

1
2
(∇+∇?)! (x) =

 (x + a!̂)−  (x − a!̂)
2a

: (4.16)

Note that the second-order di"erential operator ∇!∇?
! =∇?

! ∇! is hermitian, and when ! is summed
corresponds to the four-dimensional lattice Laplacian,

# (x) =
∑

!

∇?
! ∇! (x) =

∑

!

 (x + a!̂) +  (x − a!̂)− 2 (x)
a2

: (4.17)

It is also useful to recall the lattice integration by parts formula
∑

x

(∇!f(x))g(x) =−
∑

x

f(x)(∇?
! g(x)) ; (4.18)

that is,
∑

x

(f(x + a!̂)g(x)− f(x)g(x)) =
∑

x

(f(x)g(x − a!̂)− f(x)g(x)) ; (4.19)

which is valid for an in!nite lattice, and also for a !nite one if f and g are periodic (or their
support is smaller than the lattice). The formula above amounts to a shift in the summation
variable.
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that Wilson proposed is the following:

SW = Sf
W + Sg

W ;

Sf
W = a4

∑

x

[
− 1
2a

∑

!

[ ! (x)(r − "!)U!(x) (x + a!̂)

+ ! (x + a!̂)(r + "!)U †
! (x) (x)] + ! (x)

(
m0 +

4r
a

)
 (x)

]

= a4
∑

x

! (x)
[
1
2
("!(∇̃?

! + ∇̃!)− ar∇̃?
! ∇̃!) + m0

]
 (x) ;

Sg
W =

1
g20

a4
∑

x;!#

[Nc − ReTr[U!(x)U#(x + a!̂)U †
! (x + a#̂)U †

# (x)]] ; (5.2)

where x = an and 0¡r6 1. We have also introduced the lattice covariant derivative ∇̃! (x) =
(U!(x) (x + a!̂) −  (x))=a. This action has only nearest-neighbor interactions. 8 The "rst-order
derivative in the Dirac operator is the symmetric one, given by Eq. (4.16) in the free case (after an
integration by parts). The "elds U!(x) live on the links which connect two neighboring lattice sites,
and these variables are naturally de"ned in the middle point of a link. Each link carries a direction,
so that

U−1! (x) = U †
! (x) = U−!(x + a!̂) : (5.3)

Link variables are unitary matrices that do not depend linearly on the gauge potential A!(x). The
reason is that they belong to the group SU (Nc) rather than to the corresponding Lie algebra, as is
the case in the continuum. The relation of the U!(x) matrices to the gauge "elds A!(x), the variables
which have a direct correspondence with the continuum, is then given by

U!(x) = eig0aT
aAa

!(x) (a= 1; : : : ; N 2
c − 1) ; (5.4)

where the Ta are SU (Nc) matrices in the fundamental representation.
The Wilson action possesses exact local gauge invariance on the lattice at any "nite a. The

gauge-invariant construction is done directly on the lattice, as an extension of a discretized version
of the free continuum fermionic action. It is not therefore a trivial straightforward discretization of
the whole gauge-invariant continuum QCD action, where gauge invariance would be recovered only
in the continuum limit. A naive lattice discretization of the minimal substitution rule 9! → D! would
in fact result in an action that violates gauge invariance on the lattice, whereas with the choice made
by Wilson gauge invariance is kept as a symmetry of the theory for any a. It is this requirement
that causes the group variables U! to appear in the action instead of the algebra variables A!. The
lattice gauge transformations are

U!(x)→$(x)U!(x)$−1(x + a!̂) ;

 (x)→$(x) (x) ;
! (x)→ ! (x)$−1(x) ; (5.5)

8 Other actions can have more complicated interactions, like for example overlap fermions (see Section 8).
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a
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a
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where !̂ denotes the unit vector in the ! direction. It is easy to check that

(∇!)† =−∇?
! ; (4.14)

(∇?
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† =−∇! ; (4.15)

that is they are anti-conjugate to each other. Therefore in a lattice theory that is supposed to have
a hermitian Hamiltonian only their sum, ∇! +∇?

! , which is anti-hermitian, can be present. It acts
as a lattice derivative operator extending over two lattice spacings:

1
2
(∇+∇?)! (x) =

 (x + a!̂)−  (x − a!̂)
2a

: (4.16)

Note that the second-order di"erential operator ∇!∇?
! =∇?

! ∇! is hermitian, and when ! is summed
corresponds to the four-dimensional lattice Laplacian,

# (x) =
∑

!

∇?
! ∇! (x) =

∑

!

 (x + a!̂) +  (x − a!̂)− 2 (x)
a2

: (4.17)

It is also useful to recall the lattice integration by parts formula
∑

x

(∇!f(x))g(x) =−
∑

x

f(x)(∇?
! g(x)) ; (4.18)

that is,
∑

x

(f(x + a!̂)g(x)− f(x)g(x)) =
∑

x

(f(x)g(x − a!̂)− f(x)g(x)) ; (4.19)

which is valid for an in!nite lattice, and also for a !nite one if f and g are periodic (or their
support is smaller than the lattice). The formula above amounts to a shift in the summation
variable.

Cannot form gauge-invariant bilinear operators 
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gauge-invariant construction is done directly on the lattice, as an extension of a discretized version
of the free continuum fermionic action. It is not therefore a trivial straightforward discretization of
the whole gauge-invariant continuum QCD action, where gauge invariance would be recovered only
in the continuum limit. A naive lattice discretization of the minimal substitution rule 9! → D! would
in fact result in an action that violates gauge invariance on the lattice, whereas with the choice made
by Wilson gauge invariance is kept as a symmetry of the theory for any a. It is this requirement
that causes the group variables U! to appear in the action instead of the algebra variables A!. The
lattice gauge transformations are

U!(x)→$(x)U!(x)$−1(x + a!̂) ;

 (x)→$(x) (x) ;
! (x)→ ! (x)$−1(x) ; (5.5)

8 Other actions can have more complicated interactions, like for example overlap fermions (see Section 8).
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Fig. 5. The plaquette.

with !∈ SU (Nc), and it is easy to see that they leave the quark–gluon interaction term in the
Wilson action invariant. Note that also in the lattice theory the local character of the invariance is
maintained.
This form of local gauge invariance imposes strong constraints on the form of the gauge !eld-

strength tensor F"#. Given the above formula for the lattice gauge transformations of the U"’s, it
is easy to see that the simplest gauge-invariant object that one can build from the link variables
involves a path-ordered closed product of links. Indeed, one obtains a gauge-invariant quantity by
taking the trace of the product of U"’s on links forming a closed path, thanks to the unitarity of the
U"’s and the cyclic property of the trace.
The physical theory is a local one, and so in constructing the pure gauge action we should direct

our attention toward small loops. The simplest lattice approximation of F"# is then the product of
the links of an elementary square, called “plaquette”:

P"#(x) = U"(x)U#(x + a"̂)U †
" (x + a#̂)U †

# (x) ; (5.6)

shown in Fig. 5. This form is not surprising, given that the gauge !eld-strength tensor is in di"erential
geometry the curvature of the metric tensor. One could also take larger closed loops, but this minimal
choice gives better signal-to-noise ratios, and for the standard Wilson action the trace of the plaquette
is then used. 9 This is the expression appearing in the last line of Eq. (5.2). The factor Nc can be
understood by looking at the formal expansion of the plaquette Eq. (5.6) in powers of a, which reads

P"#(x) = 1 + ig0a2F"#(x)− 1
2 g

2
0a
4F2"#(x) + ia

3G"#(x) + ia4H"#(x) ; (5.7)

with G and H hermitian !elds. 10 We have then

ReTr P"#(x) = Nc −
1
2
g20a

4 Tr F2"#(x) + O(a6) ; (5.9)

9 Other actions which use di"erent approximations for F"#, with the aim of reducing the discretization errors, are
discussed in Section 11.2.
10 This expansion can be derived by using

A"(x + a#̂) = A"(x) + a9#A"(x) + · · · : (5.8)
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Fig. 8. The diagram on the left is zero in the quenched approximation, while the diagram on the right does not contain
internal quark loops and has to be included also in quenched calculations.

In perturbation theory, quenching means dropping all diagrams which contain an internal quark
loop, but the inclusion of these diagrams is usually not so challenging as it is in the simulations.
For consistency one should not include diagrams containing internal quark loops when perturbative
calculations have to be used in connection with quenched simulations.

6. Dealing with chiral symmetry on the lattice

Due to the presence of the Wilson term (the part of the action proportional to the parameter r),
the Wilson action explicitly breaks chiral symmetry, so that Wilson fermions do not possess chiral
invariance even when the bare mass of the quark is zero. This term turns out however to be necessary
in order to get rid of the 4d−1 extra fermions (also called doublers) which are unavoidably present
in the naive lattice discretization of the QCD action.
Let us see what would happen putting r = 0 in the Wilson action (which corresponds to naive

lattice fermions). In this case, the free fermion propagator is just

Sab(k; m0) = !ab · a
−i
∑

" #" sin ak" + am0
∑

" sin
2 ak" + (am0)2

: (6.1)

Let us for simplicity consider the massless naive propagator, setting m0 = 0 in the above equa-
tion. The propagator has a pole at ak = (0; 0; 0; 0), as expected. However, there are also poles at
($; 0; 0; 0); (0; $; 0; 0); : : : ; ($; $; 0; 0); : : : ; ($; $; $; $), that is at the edges of the !rst Brillouin zone, be-
cause

∑
" sin

2 ak" vanishes at each point where any k" is either 0 or $=a. Each pole of the propagator
corresponds to a massless fermion in the theory, even if all these extra poles are at the edges of the
Brillouin zone. In fact, we can always think of shifting the integration in momentum space, thanks
to the periodicity of the lattice, and so bring these poles inside the Brillouin zone. For example, we
could shift

∫ $=a
−$=a to

∫ 3$=2a
−$=2a.

For r = 0 we would then have to take into account all these 16 Dirac particles when doing
lattice computations. Although they are a lattice artifact, they would be pair produced as soon as
the interaction is switched on. They would appear in internal loops and contribute to intermediate
processes.

For r=0, 

If m0=0, the propagator has 16 different poles including the origin. 

divided into 8 particles with opposite chirality, which is more than 
that of the continuum theory, and can destroy its chiral property 

The Wilson term    contributes a momentum-dependent mass 
to the fermions, and thus removes the doublers. 
Expense:	
  adding	
  new	
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  error	
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Let us consider in more detail one of these poles, for example, the one at ak =(!; 0; 0; 0). To see
things more clearly, we make the change of variables

k ′0 =
!
a
− k0; k ′i = ki ; (6.2)

and correspondingly 18

"′0 =−"0; "′i = "i ; (6.3)

so that "′5 =−"5. The propagator in the new variables takes near ak ′ = (0; 0; 0; 0) the same form as
the original propagator Eq. (6.1) near ak =(0; 0; 0; 0). This means that there is a fermion mode also
at ak = (!; 0; 0; 0), and moreover the chirality of this new particle is opposite to the chirality of the
mode at ak =(0; 0; 0; 0), because "′5 =−"5, so that (1+ "5)=2= (1− "′5)=2. It can be easily seen that
the 16 doublers split in 8 particles of a given chirality and 8 particles of the opposite chirality, so
that even if the massless continuum theory had chiral symmetry and the physical particle (the pole
at the origin) was a chiral mode we end up with a vector theory on the lattice. The main problem
then is not that there are more species of fermions than expected, but that the doublers destroy the
chiral properties of the continuum theory.
The Wilson term does precisely the work of suppressing these 15 unwanted additional fermions

in the continuum limit. In fact, the Wilson action can be written in the form

DW = 1
2 ("#(∇̃

?
# + ∇̃#)− ar∇̃?

# ∇̃#) ; (6.4)

where the gauge covariant forward derivative is given by

∇̃# (x) =
1
a
(U#(x) (x + a#̂)−  (x)) : (6.5)

The piece

− 1
2 ar∇̃

?
# ∇̃# (6.6)

in action (6.4) is the so-called Wilson term. It is an irrelevant operator which however modi!es
the lattice dispersion relation for !nite lattice spacing. It contributes a mass of the order of the
cuto" to the doublers at the edges of the Brillouin zone. This mass becomes large in the contin-
uum limit and the doublers decouple from the physical fermion. Of course, being a generalized
(momentum-dependent) mass term, it necessarily breaks chiral symmetry. The connection between
doublers and chiral symmetry is a deep one, and what we have shown is a particular case of a
general phenomenon, as we will shortly see.
Thus, if one uses Wilson fermions chiral symmetry is broken and can at best only be recovered

in the continuum limit. The breaking of chiral symmetry at !nite lattice spacing has serious con-
sequences on the Wilson theory, among them the appearance of an additive renormalization to the
quark mass. The nonzero value of the bare quark mass which corresponds to a vanishing renormal-
ized quark mass is called critical mass. Its value depends on the strength of the interaction. There
is then a critical line in the plane of bare parameters,

m0 = mc(g0); mc(0) = 0 ; (6.7)

18 The Dirac matrices that one has to use in the transformed variables are in fact "′# = ("0"5)"#("0"5)†.
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extra particles (doublers) are present in order to cancel the axial anomaly. When one tries to remove
the doublers from the game, then the anomaly is back again. This situation must then correspond
to a regularization which somehow has to break chiral symmetry, and in fact we end up with the
Wilson lattice action. So, everything !ts in the general picture.
After these general considerations we are now ready to state the Nielsen–Ninomiya theorem. In

one of its formulations it says that the lattice massless Dirac operator D = !"D" in the fermionic
action

SF = a4
∑

x;y

" (x)D(x − y) (y) (6.12)

cannot satisfy the following four properties at the same time:

(a) D(x) is local (in the sense that is bounded by Ce−!|x|);
(b) its Fourier transform has the right continuum behavior for small p: D(p) = i!"p" + O(ap2);
(c) D(p) is invertible for p ̸= 0 (and hence there are no massless doublers);
(d) !5D + D!5 = 0 (it is invariant under chiral transformations).

Therefore, for any given lattice action at least one of the these conditions has to fail. In particular,
naive fermions have doublers and therefore do not satisfy (c), Wilson fermions break chiral symmetry
and therefore do not satisfy (d), and SLAC fermions are not local and therefore do not satisfy (a).
The case of staggered fermions (another widely used, and old, fermion formulation which has been
useful for studying problems in which chiral symmetry is relevant, and which will be discussed in
the next section) is more complicated from this point of view: only a U (1)⊗U (1) subgroup of the
full SU (Nf )⊗ SU (Nf ) chiral group remains unbroken, and the doublers are removed only partially.
Contrary to what one would naively expect from the Nielsen–Ninomiya theorem, it is still possible

to construct a Dirac operator which satis!es (a)–(c) and it is also chirally invariant. The solution to
this apparent paradox is that the corresponding chiral symmetry is not the one associated with a Dirac
operator which anticommutes with !5, and the condition (d) is instead replaced by the Ginsparg–
Wilson relation, according to which !5D + D!5 is not zero, but is proportional to aD!5D. Thus,
the actual lattice chiral symmetry turns out not to be what one would naively expect. The Nielsen–
Ninomiya theorem is valid but one can have a nonpathological formulation of chiral fermions with
no doublers. 22

Ginsparg–Wilson fermions will be discussed in detail in Section 8. Before that, we will shortly
present staggered fermions. If one wants to maintain some form of chiral symmetry, but is prepared
to give up #avor symmetry, then staggered fermions are the ideal fermions to work with. Otherwise,
the only way to maintain chiral symmetry and #avor symmetry at the same time (and of course
all other fundamental properties like locality, unitarity etc.) leads again to the Ginsparg–Wilson
relation.

22 When the condition that the Dirac operator anticommutes with !5 is released (at a ̸= 0), the lattice quark propagator
is not restricted to be of the form (6.11) and the considerations about the presence of the doublers deriving from it are not
anymore valid. In fact, one !nds more general forms of the fermion propagator (see for instance the overlap propagator
in Eqs. (8.20) and (8.21)).
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An up-to-date discussion of the numerical results which have been obtained using Ginsparg–Wilson
fermions can be found in Giusti (2002).
A Dirac operator D which satis!es the Ginsparg–Wilson relation

!5D + D!5 = a
1
"
D!5D (8.1)

and the hermiticity condition D† = !5D!5 de!nes fermions which have exact chiral symmetry, no
doublers 23 and which also satisfy all other fundamental requirements of a sensible !eld theory like
"avor symmetry, locality (Hern#andez et al., 1999), 24 unitarity and gauge invariance.
L$uscher has shown that fermions obeying the Ginsparg–Wilson relation possess an exact chiral

symmetry at !nite lattice spacing, which is of the form (L$uscher, 1998)

 →  + j · !5
(
1− a

"
D
)

 ; (8.2)

% → % + j · % !5 : (8.3)

Note the asymmetric way in which  and % appear in the transformation. 25 The global anomaly
of the original continuum fermions is also reproduced at nonzero lattice spacing (as was already
noticed in the case of domain wall fermions by Jansen (1992)). In terms of the quark propagator
the Ginsparg–Wilson relation reads

S(x; y)!5 + !5S(x; y) = a
1
"
!5 #(x − y) ; (8.6)

which implies that the propagator is chirally invariant at all nonzero distances, i.e., on the mass
shell.
This surprising result is a new formulation of chiral symmetry that can coexist with a momentum

cuto&. The fact is that chiral symmetry can be realized on the lattice in di&erent ways other than
the naive expectation, without violating the Nielsen–Ninomiya theorem. Ginsparg–Wilson fermions
do not obey the anticommutation relation of the Dirac operator with !5, which is only recovered
in the continuum limit. Chirality remains a symmetry of the lattice theory also for nonzero lattice
spacing, as are "avor symmetry and the other fundamental symmetries.
The chiral symmetry associated with the Ginsparg–Wilson relation can be used to de!ne left- and

right-handed fermions. We !rst note that the operator

!̂5 = !5

(
1− a

"
D
)

(8.7)

23 Although in general the Ginsparg–Wilson relation does not guarantee the absence of doublers, we are of course only
interested in actions which have no doublers and the solutions that we will discuss are all of this kind.
24 Locality in this context does not have the meaning of strict locality, but it is to be understood in the larger sense that

the strength of the interaction decays exponentially with the distance in lattice units. It becomes microscopically small
when one considers the continuum limit.
25 Although to leading order in j they can be rewritten in the symmetric form

 →  + j · !5
(
1− a

2"
D
)

 ; (8.4)

% → % + j · % 
(
1− a

2"
D
)

!5 : (8.5)

Exact chiral symmetry: 

Ginsparg-Wilson relation (1982): 

S. Capitani / Physics Reports 382 (2003) 113–302 157

An up-to-date discussion of the numerical results which have been obtained using Ginsparg–Wilson
fermions can be found in Giusti (2002).
A Dirac operator D which satis!es the Ginsparg–Wilson relation

!5D + D!5 = a
1
"
D!5D (8.1)

and the hermiticity condition D† = !5D!5 de!nes fermions which have exact chiral symmetry, no
doublers 23 and which also satisfy all other fundamental requirements of a sensible !eld theory like
"avor symmetry, locality (Hern#andez et al., 1999), 24 unitarity and gauge invariance.
L$uscher has shown that fermions obeying the Ginsparg–Wilson relation possess an exact chiral

symmetry at !nite lattice spacing, which is of the form (L$uscher, 1998)

 →  + j · !5
(
1− a

"
D
)

 ; (8.2)

% → % + j · % !5 : (8.3)

Note the asymmetric way in which  and % appear in the transformation. 25 The global anomaly
of the original continuum fermions is also reproduced at nonzero lattice spacing (as was already
noticed in the case of domain wall fermions by Jansen (1992)). In terms of the quark propagator
the Ginsparg–Wilson relation reads

S(x; y)!5 + !5S(x; y) = a
1
"
!5 #(x − y) ; (8.6)

which implies that the propagator is chirally invariant at all nonzero distances, i.e., on the mass
shell.
This surprising result is a new formulation of chiral symmetry that can coexist with a momentum

cuto&. The fact is that chiral symmetry can be realized on the lattice in di&erent ways other than
the naive expectation, without violating the Nielsen–Ninomiya theorem. Ginsparg–Wilson fermions
do not obey the anticommutation relation of the Dirac operator with !5, which is only recovered
in the continuum limit. Chirality remains a symmetry of the lattice theory also for nonzero lattice
spacing, as are "avor symmetry and the other fundamental symmetries.
The chiral symmetry associated with the Ginsparg–Wilson relation can be used to de!ne left- and

right-handed fermions. We !rst note that the operator

!̂5 = !5

(
1− a

"
D
)

(8.7)

23 Although in general the Ginsparg–Wilson relation does not guarantee the absence of doublers, we are of course only
interested in actions which have no doublers and the solutions that we will discuss are all of this kind.
24 Locality in this context does not have the meaning of strict locality, but it is to be understood in the larger sense that

the strength of the interaction decays exponentially with the distance in lattice units. It becomes microscopically small
when one considers the continuum limit.
25 Although to leading order in j they can be rewritten in the symmetric form

 →  + j · !5
(
1− a

2"
D
)

 ; (8.4)

% → % + j · % 
(
1− a

2"
D
)

!5 : (8.5)



Overlap fermions 

�  The overlap Dirac operator (Neuberger, 
1998): 
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and Slavnov, 1993), devised an ingenious construction with which it was shown how to de!ne chiral
fermions on the lattice. The chiral mode resulted from the “overlap” between two in!nite towers of
chiral fermion !elds. The existence of an in!nite number of fermions for each lattice site was the
crucial new feature which was understood to be necessary in order to construct chiral fermions on
the lattice. The Dirac operator coming out from this formalism was later recognized by Neuberger
(1998a–c) to be a solution of the Ginsparg–Wilson relation, and its action was given a simple form.
In the massless case 26 the overlap-Dirac operator is 27

DN =
1
a
!
(
1 +

X√
X † X

)
; X = DW − 1

a
! ; (8.16)

where DW is the usual Wilson–Dirac operator:

DW =
1
2
("#(∇̃?

# + ∇̃#)− ar∇̃?
# ∇̃#); ∇̃# (x) =

1
a
(U#(x) (x + a#̂)−  (x)) : (8.17)

In the range 0¡ !¡ 2r (at tree level) a chiral spectrum of massless fermions is obtained. For the
pure gauge part the standard Wilson plaquette action is most often used.
Since additive mass renormalization is forbidden by chiral symmetry, when using overlap fermions

one avoids altogether a source of systematic errors always present with Wilson fermions.
Although the overlap interaction range is not limited to nearest-neighbor sites, and not even to

next-to-nearest-neighbor sites, but in fact involve all sites, the strength of the interaction falls o"
exponentially with the distance (in lattice units), and in this sense the theory is still local (though
not ultralocal).
Let us now have a look at the structure of perturbation theory with overlap fermions. The inter-

action vertices and the quark propagator are much more complicated than the ones in the Wilson
formulation. This causes the perturbative computations to be rather cumbersome, and the help of a
computer is necessary even in the simplest cases. The calculations in Capitani (2001a, b), Capitani
and Giusti (2000, 2001) and Capitani (2002a) have been carried out using a set of routines written
in the symbolic manipulation language FORM. In several cases these routines are an extension of
the ones used to perform calculations with the Wilson action.

26 When quarks have a nonzero bare mass m0 then the overlap-Dirac operator is given by

D(m0)
N =

(
1− 1

2!
am0

)
DN + m0 : (8.14)

27 We note that any X which satis!es

"5X † = X"5 (8.15)

makes DN a solution of the Ginsparg–Wilson relation. Using the Wilson action is the standard option, although other
actions have been sometimes advocated for X , with the aim of “improving” things. Such generalized overlap fermions
have been proposed by Bietenholz (1999, 2001, 2002) and Bietenholz and Hip (2000). They showed that when X is a
truncated perfect action (see later) the convergence properties of these fermions are improved, together with their locality
and other symmetries. The presence in X of fat link actions (Section 15.7) can further improve things (Bietenholz, 2001;
DeGrand, 2001). Perturbation theory however becomes much more complicated in all these cases.

1.  One	
  solu<on	
  to	
  the	
  Ginsparg-­‐Wilson	
  rela<on;	
  
2.  Apparently	
  nonlocal,	
  but	
  the	
  interac<on	
  decays	
  

exponen<ally	
  over	
  distance,	
  and	
  thus	
  can	
  be	
  regarded	
  as	
  
local;	
  

3.  Other	
  solu<ons,	
  like	
  domain	
  wall	
  fermions,	
  fixed-­‐point	
  
fermions	
  (“classically	
  perfect”	
  fermions).	
  



Overlap fermions 
� Why do we use overlap fermions for the 

perturbative matching? 
A	
  plain	
  reason:	
  our	
  laZce	
  collaborators	
  use	
  
overlap	
  fermions.	
  
Deeper	
  reason:	
  
1.  Success	
  in	
  dealing	
  with	
  certain	
  problems	
  in	
  

QCD	
  (see	
  Liu,	
  Alexandru,	
  Hovrath,	
  2007);	
  
2.  Dov	
  can	
  be	
  used	
  to	
  construct	
  gauge	
  field	
  

operators;	
  
3.  And	
  perhaps	
  more…	
  



Overlap fermions 

�  In particular, it has been proven that 

�  Therefore, for perturbative calculations 
we use Dov to obtain the Feynman rules 
for the field strength tensor with finite a. 
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Trace over spinor indices 
A constant that can be calculated to arbitrary precision 



Overlap fermions 

� Expansion of Dov in orders of g 

cellations necessary to ensure renormalizability at one-loop level. In Ref.[19]
the finite part of the vacuum polarization at one-loop has been evaluated
and the lambda parameter ratio has been obtained. But the quark self-
energy, which determines the chiral property of the renormalized fermions,
was not analyzed.

2 Derivation of the Feynman rules

In this section we derive the Feynman rules for lattice QCD with the overlap
Dirac operator, which are necessary for the one-loop analysis. The fermion
action with the overlap Dirac operator is

SF = a4
∑

m

ψ̄(m)D ψ(m), (2.1)

where

D =
1

a

(
1 + X

1√
X†X

)
. (2.2)

Here X is the Wilson-Dirac operator defined as

Xmn =
1

2a

4∑

µ=1

[
γµ

{
δm+µ̂,nUµ(m) − δm,n+µ̂U †

µ(n)
}

+r
{
2δm,n − δm+µ,nUµ(m) − δm,n+µU †

µ(n)
}]

+
M0

a
δm,n,

(2.3)

where Uµ = eiagAµ is the link variable and r is the Wilson parameter. Ex-
panding Xmn up to the second order in the coupling constant g, we obtain

Xmn =
∫ π

a

−π
a

d4p

(2π)4
d4q

(2π)4
eia(qm−pn)X(q, p), (2.4)

X(q, p) = X0(p)(2π)4δP (q − p) + X1(q, p) + X2(q, p) + O(g3), (2.5)

where

X0(p) =
∑

ρ

i
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γρ sin apρ +

r
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(1 − cos apµ) +
1

a
M0, (2.6)

3
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, (2.7)

X2(q, p) =
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d4k1
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∑
ki)
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∑
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2

)
, (2.8)

and the index i runs 1,2 and δP is the periodic lattice delta function. TA are
SU(3) generators in the fundamental representation. The vertex functions
V1µ and V2µ are given by

V1µ(p +
k

2
) = iγµ cos a

(
p +

k

2

)

µ
+ r sin a

(
p +

k

2
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µ
,
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∑
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2

)

µ
+ ar cos a
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∑
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2

)

µ
.

(2.9)

The weak coupling expansion of the overlap Dirac operator is derived in
the following way [10]. Using the following identity:

1√
X†X

=
∫ ∞

−∞

dt

π

1

t2 + X†X
, (2.10)

we expand the r.h.s of Eq. (2.2) up to the second order in g as
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Overlap fermions 
�  Results 

 
 
�  To obtain the 3-gluon part, we need to go to 

order g2, which is much more complicated. 

Uµ(x) (x+ aµ̂) ! ⌦(x)Uµ(x) (x+ aµ̂) (1)

r̃µ (x) =
Uµ(x) (x+ aµ̂)�  (x)

a

(2)

D

ov

=
⇢

a

✓
1 +

Xp
X

†
X

◆
, X = DW � ⇢

a

(3)

trs�µ⌫Dov

(x, x) = a

2

C

T (⇢, r)Fµ⌫(x) +O(a3) (4)

1

t

2 +X

†
X

=
1

t

2 +X

†
0

X

0

� 1

t

2 +X

†
0

X

0

⇣
X

†
0

X

1

+X

†
1

X

0

⌘ 1

t

2 +X

†
0

X

0

+


1

t

2 +X

†
0

X

0

⇣
X

†
0

X

1

+X

†
1

X

0

⌘ 1

t

2 +X

†
0

X

0

⇣
X

†
0

X

1

+X

†
1

X

0

⌘ 1

t

2 +X

†
0

X

0

� 1

t

2 +X

†
0

X

0

⇣
X

†
0

X

2

+X

†
2

X

0

+X

†
1

X

1

⌘ 1

t

2 +X

†
0

X

0

�
+O(g3) . (5)

[trs�µ⌫Dov

(x, x)]0 = 0 (6)

1

In the continuum limit,  
 

U

µ

(x) (x+ aµ̂) ! ⌦(x)U

µ

(x) (x+ aµ̂) (1)

˜r
µ

 (x) =

U

µ

(x) (x+ aµ̂)�  (x)

a

(2)

D

ov

=

⇢

a

✓
1 +

Xp
X

†
X

◆
, X = D

W

� ⇢

a

(3)

tr

s

�

µ⌫

D

ov

(x, x) = a

2

C

T

(⇢, r)F

µ⌫

(x) +O(a

3

) (4)

1

t

2

+X

†
X

=

1

t

2

+X

†
0

X

0

� 1

t

2

+X

†
0

X

0

⇣
X

†
0

X

1

+X

†
1

X

0

⌘
1

t

2

+X

†
0

X

0

+


1

t

2

+X

†
0

X

0

⇣
X

†
0

X

1

+X

†
1

X

0

⌘
1

t

2

+X

†
0

X

0

⇣
X

†
0

X

1

+X

†
1

X

0

⌘
1

t

2

+X

†
0

X

0

� 1

t

2

+X

†
0

X

0

⇣
X

†
0

X

2

+X

†
2

X

0

+X

†
1

X

1

⌘
1

t

2

+X

†
0

X

0

�
+O(g

3

) . (5)

[tr

s

�

µ⌫

D

ov

(x, x)]

0

= 0 (6)

[tr

s

�

µ⌫

D

ov

(x, x)]

1

= �ig

Z
d

3

p

(2⇡)

3

e

ix·p
X

⌫

A

⌫

(p)

Z
d�

1

(t

2

+ !

2

(k � p))

1

(t

2

+ !

2

(k))

⇥tr

s

("
X

µ

�

µ

✓
� i

a

sin((k � p)

µ

a)

◆
+

X

µ

r

a

(1� cos((k � p)

µ

a))

#

⇥ [�

⌫

i sin((p

µ

/2� k

µ

)a)� r cos((p

µ

/2� k

µ

)a)]

⇥
"
�
X

⇢

�

⇢

i

a

sin(k

⇢

a) +

X

⇢

r

a

(1� cos(k

⇢

a))

#)
(7)

[tr

s

�

µ⌫

D

ov

(x, x)]

1 ⇠ g (@

µ

A

⌫

(x)� @

⌫

A

µ

(x)) (8)

1

U

µ

(x) (x+ aµ̂) ! ⌦(x)U

µ

(x) (x+ aµ̂) (1)

˜r
µ

 (x) =

U

µ

(x) (x+ aµ̂)�  (x)

a

(2)

D

ov

=

⇢

a

✓
1 +

Xp
X

†
X

◆
, X = D

W

� ⇢

a

(3)

tr

s

�

µ⌫

D

ov

(x, x) = a

2

C

T

(⇢, r)F

µ⌫

(x) +O(a

3

) (4)

1

t

2

+X

†
X

=

1

t

2

+X

†
0

X

0

� 1

t

2

+X

†
0

X

0

⇣
X

†
0

X

1

+X

†
1

X

0

⌘
1

t

2

+X

†
0

X

0

+


1

t

2

+X

†
0

X

0

⇣
X

†
0

X

1

+X

†
1

X

0

⌘
1

t

2

+X

†
0

X

0

⇣
X

†
0

X

1

+X

†
1

X

0

⌘
1

t

2

+X

†
0

X

0

� 1

t

2

+X

†
0

X

0

⇣
X

†
0

X

2

+X

†
2

X

0

+X

†
1

X

1

⌘
1

t

2

+X

†
0

X

0

�
+O(g

3

) . (5)

[tr

s

�

µ⌫

D

ov

(x, x)]

0

= 0 (6)

[tr

s

�

µ⌫

D

ov

(x, x)]

1

= �ig

Z
d

3

p

(2⇡)

3

d

3

k

(2⇡)

3

e

ix·p
X

⌫

A

⌫

(p)

Z
d�

1

(t

2

+ !

2

(k � p))

1

(t

2

+ !

2

(k))

⇥tr

s

("
X

µ

�

µ

✓
� i

a

sin((k � p)

µ

a)

◆
+

X

µ

r

a

(1� cos((k � p)

µ

a))

#

⇥ [�

⌫

i sin((p

µ

/2� k

µ

)a)� r cos((p

µ

/2� k

µ

)a)]

⇥
"
�
X

⇢

�

⇢

i

a

sin(k

⇢

a) +

X

⇢

r

a

(1� cos(k

⇢

a))

#)
(7)

[tr

s

�

µ⌫

D

ov

(x, x)]

1 ⇠ g (@

µ

A

⌫

(x)� @

⌫

A

µ

(x)) (8)

1


