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Medium-energy Electron Ion Collider (MEIC) at Jefferson Lab  

 

MEIC electron complex: Polarized CEBAF + electron collider ring 

 

MEIC electron polarization design 

̶ Overview of strategies 

̶ Universal spin rotator 

̶ Polarization configuration 

̶ Optimization of average polarization 

̶ Continuous injection option 

̶ Polarization measurement 

 

Conclusions & Outlook  
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MEIC at Jefferson Lab 
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Three compact rings: 

• 3 to 12 GeV electron 

• Up to 25 GeV/c proton (warm) 

• Up to 100 GeV/c proton (cold) 
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12 GeV CEBAF 
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11 GeV max 

energy 

12 GeV max 

energy 

CEBAF fixed target program 

– 5-pass recirculating SRF linac 

– Exciting science program beyond 2025 

– Can be continued parallel to MEIC  

CEBAF will provide for MEIC 

– Up to 12 GeV CW electron beam 

– High repetition rate (750 MHz) 

– High polarization (>85%) 

– Good beam quality up to mA level 
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MEIC Electron Collider Ring 
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Electron collider ring geometry  

– Figure-8 shape electron collider ring with a crossing angle of 60 

– Each of two arcs bends 240  

– Integrated interaction region with forward electron detection 

 

 

 

 

 

 

 

 

 

 

Electron polarization requirements 

– Electron polarization of 70% or above 

– Longitudinal electron polarization at collision points 

– Spin flipping 

 

Arc 445m, 2400 

IPs 

Forward e- detection 
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Highly vertically polarized electron beams are injected from CEBAF 
– avoid spin decoherence, simplify spin transport from CEBAF to MEIC, alleviate the detector background 

Polarization is designed to be vertical in the MEIC arc to avoid spin diffusion and 

longitudinal at collision points using spin rotators  

Universal spin rotator (fixed orbit) rotates the electron polarization from 3 to 12GeV  

Desired spin flipping is implemented by changing the source polarization 

Compton polarimeter is considered to measure the electron polarization  
– Two long opposite polarized bunch trains (instead of alternate polarization between bunches) simplify the Compton 

polarimetry 

Polarization configuration with figure-8 geometry removes electron spin tune energy 

dependence 
– Such configuration has a net radiative Sokolov-Ternov depolarization effect 

Continuous injection of electron bunch trains from the CEBAF is considered to  
– preserve and/or replenish the electron polarization, especially at higher energies 

Spin matching in some key regions is considered to further improve polarization lifetime 

Overview of e− Polarization Strategies 
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Universal Spin Rotator (USR) 

7 

Schematic drawing of USR Solenoid decoupling & Lattice function 

Parameters of USR for MEIC  

P. Chevtsov et al., Jlab-TN-10-026 
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GeV rad T·m rad rad T·m rad 

3 π/2 15.7 π/3 0 0 π/6 

4.5 π/4 11.8 π/2 π/2 23.6 π/4 

6 0.62 12.3 2π/3 1.91 38.2 π/3 

9 π/6 15.7 π 2π/3 62.8 π/2 

12 0.62 24.6 4π/3 1.91 76.4 2π/3 
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Polarization Configuration 
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Unchanged polarization in two arcs by having opposite solenoid field directions in 

two spin rotators in the same long straight section  

– figure-8 removes spin tune energy dependence 

S-T FOSP 

S-T: Sokolov-Ternov 

self-Polarization effect 

FOSP: First Order Spin 

Perturbation from non-zero 

δ in the solenoid through G 

matrix.  
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Optimization of Average Polarization 
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Continuous Injection Option  
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Lost or 

Extracted 

P0 (>Pt) 

Pt 

…… 

1.33 ns,  

748.5 MHz  2.4 pC 

2.3μs,  ~1700 bunches 

2.4 pC 
1.33 ns, 

748.5 MHz 

2.3μs, ~1700 bunches 

…… 

…… 

200 us    Iave = 33 nA  250 ms     Pave /P0= 92% 

Continuous injection principle 

 

 

 

 

 

Low injected current preserves high polarization 

One possible injection bunch pattern 

– Damping time at energy > 5 GeV << 250ms 

– No beam dump needed 
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Polarization Measurement 
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Compton polarimetry 

– same polarization at laser as at IP due to zero net bend 

 

 

 

 

 

 

 

Spin dancing (using spin rotators): 

– Experimentally optimize (calibrate)  

     longitudinal polarization at IP 
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Schematic drawing of USR 

Illustration of spin rotation by a USR  

Courtesy of Alexandre Camsonne 
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Electron polarization schemes have been developed  

– Comprehensive polarization strategies 

•  Polarized CEBAF + figure-8 shape ring + universal spin rotator + 

polarization configuration (+ continuous injection)  

– Optimization of average polarization 

– Polarization measurement 

Outlook 

– Scheme or technique optimization 

– Spin matching through the optics to improve polarization lifetime 

– Spin tracking with realistic errors using SLICKTRACK 
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