## Overview of TMD Evolution

Daniël Boer<br>Spin2OI4, Beijing, October 20, 2014



## Introduction

## SIDIS: a typical TMD process

$$
e p \rightarrow e^{\prime} h X
$$



Semi-inclusive DIS is a process sensitive to transverse momentum of quarks
$\mathrm{P}_{\mathrm{h} \perp}=$ the observed transverse momentum of the produced hadron $=\mathrm{z}_{\mathrm{h}} \mathrm{Q}_{\mathrm{T}}$
$\mathrm{Q}_{\mathrm{T}}=$ the transverse momentum of the virtual photon w.r.t. $p$ and $h$
Many transverse momentum dependent angular distributions have been measured in SIDIS by HERMES, COMPASS, and JLab experiments

Evolution is needed to compare these results, factorization dictates the evolution

## Transverse Momentum of Quarks

Including transverse momentum of quarks involves much more than replacing $f_{1}(x) \rightarrow f_{1}\left(x, k_{T}^{2}\right)$ in collinear factorization expressions

One deals with less inclusive processes and with TMD factorization
TMD = transverse momentum dependent parton distribution
Here the transverse momentum dependence can be correlated with the spin, e.g.
D. Sivers ('90):


Sivers function

$$
\begin{aligned}
& \Phi\left(x, \boldsymbol{k}_{T}\right)=\frac{M}{2}\left\{f_{1}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\not P}{M}+f_{1 T}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\epsilon_{\mu \nu \rho \sigma} \gamma^{\mu} P^{\nu} k_{T}^{\rho} S_{T}^{\sigma}}{M^{2}}+g_{1 s}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\gamma_{5} \not P}{M}\right. \\
&\left.+h_{1 T}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\gamma_{5} \mathscr{S}_{T} \not P}{M}+h_{1 s}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{\gamma_{5} \not k_{T} \not P}{M^{2}}+h_{1}^{\perp}\left(x, \boldsymbol{k}_{T}^{2}\right) \frac{i \not k_{T} \not P}{M^{2}}\right\}
\end{aligned}
$$

[Ralston, Soper '79; Sivers '90; Collins '93; Kotzinian '95; Mulders, Tangerman '95; D.B., Mulders '98]

## TMD factorization

## "Evolution" of TMD Factorization

- Collins \& Soper, I98I: $\mathrm{e}^{+} \mathrm{e}^{-\rightarrow} \mathrm{h}_{1} \mathrm{~h}_{2} \mathrm{X}$ [NPB 193 (198I) 38I]
- X. Ji, J.-P. Ma \& F.Yuan, 2004/5: SIDIS \& Drell-Yan (DY)
[PRD 7 I (2005) 034005 \& PLB 597 (2004) 299]
-Collins (JCC), 20II: "Foundations of perturbative QCD" [Cambridge Univ. Press]
- P. Sun, B.-W. Xiao \& F.Yuan, 20II:Higgs prod. (gluon TMDs)[PRD 84 (20II) 094005]
-Echevarria, Idilbi \& Scimemi (EIS), 20I2/4: DY \& SIDIS (SCET)[JHEP I207 (20|2) 002 \& PRD 90 (2014) 014003]
- J.P. Ma, J.X.Wang \& S. Zhao, 2012: quarkonium prod.I-loop [PRD 88 (2013) 014027]
- J.P. Ma, J.X.Wang \& S. Zhao, 2014: breakdown of factorization in P-wave quarkonium production beyond I-loop
[PLB 737 (2014) I03]
Main differences among the various approaches:
- treatment of rapidity/LC divergences, in order to make each factor well-defined
- redistribution of terms to avoid large logarithms


## TMD factorization

TMD factorization proven for SIDIS, $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{h}_{1} \mathrm{~h}_{2} \mathrm{X}$ and Drell-Yan (DY)
Schematic form of (new) TMD factorization "JCC" [Collins 201I]:
$d \sigma=H \times$ convolution of $A B+$ high- $q_{T}$ correction $(Y)+$ power-suppressed
A \& B are TMD pdfs or FFs
(a soft factor has been absorbed in them)
Details in book by J.C. Collins Summarized in arXiv:I I 07.4I23

Convolution in terms of $A$ and $B$ best deconvoluted by Fourier transform


## New TMD factorization expressions

$$
\begin{gathered}
\frac{d \sigma}{d \Omega d^{4} q}=\int d^{2} b e^{-i \boldsymbol{b} \cdot \boldsymbol{q}_{T}} \tilde{W}(\boldsymbol{b}, Q ; x, y, z)+\mathcal{O}\left(Q_{T}^{2} / Q^{2}\right) \\
\tilde{W}(\boldsymbol{b}, Q ; x, y, z)=\sum_{a} \tilde{f}_{1}^{a}\left(x, \boldsymbol{b}^{2} ; \zeta_{F}, \mu\right) \tilde{D}_{1}^{a}\left(z, \boldsymbol{b}^{2} ; \zeta_{D}, \mu\right) H(y, Q ; \mu)
\end{gathered}
$$

Fourier transforms of the TMDs are functions of the momentum fraction $x$ (or $z$ ), the transverse coordinate $b$, a rapidity variable $\zeta$, and the renormalization scale $\mu$

$$
\zeta_{F}=M^{2} x^{2} e^{2\left(y_{P}-y_{s}\right)} \quad \zeta_{D}=M_{h}^{2} e^{2\left(y_{s}-y_{h}\right)} / z^{2}
$$

$y_{s}$ is an arbitrary rapidity that drops out of the final answer

$$
\zeta_{F} \zeta_{D} \approx Q^{4} \quad \zeta_{F} \approx \zeta_{D} \approx Q^{2}
$$

The TMDs in principle also depend on the Wilson line $U$

$$
\tilde{f}^{[\mathcal{U}]}\left(x, b_{T}^{2} ; \zeta, \mu\right)
$$

## New TMD factorization expressions

$$
\begin{gathered}
\frac{d \sigma}{d \Omega d^{4} q}=\int d^{2} b e^{-i \boldsymbol{b} \cdot \boldsymbol{q}_{T}} \tilde{W}(\boldsymbol{b}, Q ; x, y, z)+\mathcal{O}\left(Q_{T}^{2} / Q^{2}\right) \\
\tilde{W}(\boldsymbol{b}, Q ; x, y, z)=\sum_{a} \tilde{f}_{1}^{a}\left(x, \boldsymbol{b}^{2} ; \zeta_{F}, \mu\right) \tilde{D}_{1}^{a}\left(z, \boldsymbol{b}^{2} ; \zeta_{D}, \mu\right) H(y, Q ; \mu)
\end{gathered}
$$

Fourier transforms of the TMDs are functions of the momentum fraction $x$ (or z), the transverse coordinate $b$, a rapidity variable $\zeta$, and the renormalization scale $\mu$

$$
\zeta_{F}=M^{2} x^{2} e^{2\left(y_{P}-y_{s}\right)} \quad \zeta_{D}=M_{h}^{2} e^{2\left(y_{s}-y_{h}\right)} / z^{2}
$$

$y_{s}$ is an arbitrary rapidity that drops out of the final answer

$$
\zeta_{F} \zeta_{D} \approx Q^{4} \quad \zeta_{F} \approx \zeta_{D} \approx Q^{2}
$$

The TMDs in principle also depend on the Wilson line $U$

$$
\tilde{f}^{[\mathcal{U}]}\left(x, b_{T}^{2} ; \zeta, \mu\right)
$$

## Gauge invariance of TMD correlators


summation of all gluon insertions leads to path-ordered exponentials in the correlators

$$
\begin{aligned}
& \mathcal{L}_{\mathcal{C}}[0, \xi]=\mathcal{P} \exp \left(-i g \int_{\mathcal{C}[0, \xi]} d s_{\mu} A^{\mu}(s)\right) \\
& \Phi \propto\langle P| \bar{\psi}(0) \mathcal{L}_{\mathcal{C}}[0, \xi] \psi(\xi)|P\rangle
\end{aligned}
$$

Efremov \& Radyushkin,Theor. Math. Phys. 44 ('8I) 774

Resulting Wilson lines depend on whether the color is incoming or outgoing
[Collins \& Soper, I983; DB \& Mulders, 2000; Brodsky, Hwang \& Schmidt, 2002;
Collins, 2002; Belitsky, X. Ji \& F.Yuan, 2003; DB, Mulders \& Pijlman, 2003]

This does not automatically imply that this affects observables, but it turns out that it does in certain cases, for example, Sivers asymmetries [Brodsky, Hwang \& Schmidt, 2002; Collins, 2002; Belitsky, Ji \& Yuan, 2003]

## Process dependence of Sivers TMD

Gauge invariant definition of TMDs in semi-inclusive DIS contains a future pointing Wilson line, whereas in Drell-Yan (DY) it is past pointing
[Belitsky, X. Ji \& F.Yuan '03]

$$
\gamma^{*} p \rightarrow h X \text { (SIDIS) }
$$

$$
p p \rightarrow \gamma^{*} X \text { (Drell-Yan) }
$$



One can use parity and time reversal invariance to relate the Sivers functions:

$$
f_{1 T}^{\perp[\text { SIDIS }]}=-f_{1 T}^{\perp[\mathrm{DY}]}
$$

[Collins '02]

## Process dependence of Sivers TMD

Gauge invariant definition of TMDs in semi-inclusive DIS contains a future pointing Wilson line, whereas in Drell-Yan (DY) it is past pointing
[Belitsky, X. Ji \& F.Yuan '03]


One can use parity and time reversal invariance to relate the Sivers functions:

$$
f_{1 T}^{\perp[\text { SIDIS }]}=-f_{1 T}^{\perp[\mathrm{DY}]} \quad \text { [Collins '02] }
$$

The more hadrons are observed in a process, the more complicated the end result: more complicated $\mathrm{N}_{\mathrm{c}}$-dependent prefactors
[Bomhof, Mulders \& Pijlman '04; Buffing, Mulders '14]

## Process dependence of Sivers TMD

Gauge invariant definition of TMDs in semi-inclusive DIS contains a future pointing Wilson line, whereas in Drell-Yan (DY) it is past pointing
[Belitsky, X. Ji \& F.Yuan '03]

$$
\gamma^{*} p \rightarrow h X \text { (SIDIS) }
$$

$$
p p \rightarrow \gamma^{*} X \text { (Drell-Yan) }
$$



One can use parity and time reversal invariance to relate the Sivers functions:

$$
f_{1 T}^{\perp[\text { SIDIS }]}=-f_{1 T}^{\perp[\mathrm{DY}]}
$$

[Collins '02]
The more hadrons are observed in a process, the more complicated the end result: more complicated $\mathrm{N}_{\mathrm{c}}$-dependent prefactors
[Bomhof, Mulders \& Pijlman '04; Buffing, Mulders 'I4]
When color flow is in too many directions: factorization breaking
[Collins \& J. Qiu '07; Collins '07; Rogers \& Mulders 'I 0 ]

## Scale dependence of TMDs

QCD corrections will also attach to the Wilson line, which needs renormalization
Wilson lines not smooth: cusp anomalous dimension [Polyakov '80; Dotsenko \& Vergeles '80; Brandt, Neri, Sato '81; Korchemsky, Radyushkin '87]

This determines the change with $\mu$
As a regularization of LC divergences, in JCC's TMD factorization the path is taken off the lightfront, the variation in rapidity determines the change with $\zeta$

$$
\tilde{f}^{[\mathcal{U}]}\left(x, b_{T}^{2} ; \zeta, \mu\right)
$$



## Scale dependence of TMDs

QCD corrections will also attach to the Wilson line, which needs renormalization
Wilson lines not smooth: cusp anomalous dimension
[Polyakov '80; Dotsenko \& Vergeles '80; Brandt, Neri, Sato '81; Korchemsky, Radyushkin '87]
This determines the change with $\mu$
As a regularization of LC divergences, in JCC's TMD factorization the path is taken off the lightfront, the variation in rapidity determines the change with $\zeta$

$$
\tilde{f}^{[\mathcal{U}]}\left(x, b_{T}^{2} ; \zeta, \mu\right)
$$

Two important consequences:

- yields energy evolution of TMD observables
- allows for calculation of the Sivers and Boer-Mulders effect on the lattice Musch, Hägler, Engelhardt, Negele \& Schäfer, 2012


## New TMD factorization expressions

$$
\begin{gathered}
\frac{d \sigma}{d \Omega d^{4} q}=\int d^{2} b e^{-i \boldsymbol{b} \cdot \boldsymbol{q}_{T}} \tilde{W}(\boldsymbol{b}, Q ; x, y, z)+\mathcal{O}\left(Q_{T}^{2} / Q^{2}\right) \\
\tilde{W}(\boldsymbol{b}, Q ; x, y, z)=\sum_{a} \tilde{f}_{1}^{a}\left(x, \boldsymbol{b}^{2} ; \zeta_{F}, \mu\right) \tilde{D}_{1}^{a}\left(z, \boldsymbol{b}^{2} ; \zeta_{D}, \mu\right) H(y, Q ; \mu)
\end{gathered}
$$

Take $\mu=Q$

$$
H\left(Q ; \alpha_{s}(Q)\right) \propto e_{a}^{2}\left(1+\alpha_{s}\left(Q^{2}\right) F_{1}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
$$

Avoids large logarithms in H , but now they do appear in the TMDs
Use renormalization group equations to evolve the TMDs to the scale:

$$
\mu_{b}=C_{1} / b=2 e^{-\gamma_{E}} / b \quad\left(C_{1} \approx 1.123\right)
$$

Or to a fixed low (but still perturbative) scale $\mathrm{Q}_{0}$, although that only works for not too large Q

## RG and CS equations

$$
\begin{gathered}
\frac{d \ln \tilde{f}(x, b ; \zeta, \mu)}{d \ln \sqrt{\zeta}}=\tilde{K}(b ; \mu) \quad \text { Collins-Soper equation } \\
\frac{d \ln \tilde{f}(x, b ; \zeta, \mu)}{d \ln \mu}=\gamma_{F}\left(g(\mu) ; \zeta / \mu^{2}\right) \quad \text { RG equation } \\
d \tilde{K} / d \ln \mu=-\gamma_{K}(g(\mu)) \\
\gamma_{F}\left(g(\mu) ; \zeta / \mu^{2}\right)=\gamma_{F}(g(\mu) ; 1)-\frac{1}{2} \gamma_{K}(g(\mu)) \ln \left(\zeta / \mu^{2}\right)
\end{gathered}
$$

Using these equations one can evolve the TMDs to the scale $\mu_{\mathrm{b}}$ $\tilde{f}_{1}^{a}\left(x, b^{2} ; \zeta_{F}, \mu\right) \tilde{D}_{1}^{b}\left(z, b^{2} ; \zeta_{D}, \mu\right)=e^{-S(b, Q)} \tilde{f}_{1}^{a}\left(x, b^{2} ; \mu_{b}^{2}, \mu_{b}\right) \tilde{D}_{1}^{b}\left(z, b^{2} ; \mu_{b}^{2}, \mu_{b}\right)$
with Sudakov factor

$$
S(b, Q)=-\ln \left(\frac{Q^{2}}{\mu_{b}^{2}}\right) \tilde{K}\left(b, \mu_{b}\right)-\int_{\mu_{b}^{2}}^{Q^{2}} \frac{d \mu^{2}}{\mu^{2}}\left[\gamma_{F}(g(\mu) ; 1)-\frac{1}{2} \ln \left(\frac{Q^{2}}{\mu^{2}}\right) \gamma_{K}(g(\mu))\right]
$$

## Perturbative expressions

At leading order in $\alpha_{s}$

$$
\begin{aligned}
\tilde{K}(b, \mu) & =-\alpha_{s}(\mu) \frac{C_{F}}{\pi} \ln \left(\mu^{2} b^{2} / C_{1}^{2}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
\gamma_{K}(g(\mu)) & =2 \alpha_{s}(\mu) \frac{C_{F}}{\pi}+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
\gamma_{F}\left(g(\mu), \zeta / \mu^{2}\right) & =\alpha_{s}(\mu) \frac{C_{F}}{\pi}\left(\frac{3}{2}-\ln \left(\zeta / \mu^{2}\right)\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

Such that the perturbative expression for the Sudakov factor becomes:

$$
S_{p}(b, Q)=\frac{C_{F}}{\pi} \int_{\mu_{b}^{2}}^{Q^{2}} \frac{d \mu^{2}}{\mu^{2}} \alpha_{s}(\mu)\left(\ln \frac{Q^{2}}{\mu^{2}}-\frac{3}{2}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)
$$

It can be used whenever the restriction $b^{2} \ll I / \wedge^{2}$ is justified (e.g. at very large $Q^{2}$ )
If also larger $b$ contributions are important, at moderate $Q$ and small $Q_{T}$ for instance, then one needs to include a nonperturbative Sudakov factor

## Nonperturbative Sudakov factor

$$
\begin{gathered}
\tilde{W}(b) \equiv \tilde{W}\left(b_{*}\right) e^{-S_{N P}(b)} \quad b_{*}=b / \sqrt{1+b^{2} / b_{\max }^{2}} \leq b_{\max } \\
b_{\max }=1.5 \mathrm{GeV}^{-1} \Rightarrow \alpha_{s}\left(b_{0} / b_{\max }\right)=0.62
\end{gathered}
$$

such that $\mathrm{W}\left(\mathrm{b}^{*}\right)$ can be calculated within perturbation theory
In general the nonperturbative Sudakov factor is Q dependent and of the form:

$$
S_{N P}(b, Q)=\ln \left(Q^{2} / Q_{0}^{2}\right) g_{1}(b)+g_{A}\left(x_{A}, b\right)+g_{B}\left(x_{B}, b\right) \quad Q_{0}=\frac{1}{b_{\max }}
$$

Collins, Soper \& Sterman, NPB 250 (1985) 199
The g.. functions need to be fitted to data
Until recently $S_{N P}$ typically chosen as a Gaussian, e.g. Aybat \& Rogers ( $x=0.1$ ):

$$
S_{N P}\left(b, Q, Q_{0}\right)=\left[0.184 \ln \frac{Q}{2 Q_{0}}+0.332\right] b^{2}
$$

Recently alternatives considered in: P. Sun \& F.Yuan, PRD 88 (20I3) 034016
P. Sun, Isaacson, C.-P.Yuan \& F.Yuan, arXiv:I 406.3073

New form suggested by Collins (QCD evolution workshop 20|3): $e^{-m\left(\sqrt{b^{2}+b_{0}^{2}}-b_{0}\right)}$

## $S_{N P}$



Problem is to find one single universal $S_{N P}$ that describes both SIDIS and DY/Z data

Figure 6. Coefficient of $-b_{\mathrm{T}}^{2}$ in the exponent in Eq. (6), from Sun and Yuan [13], as a function of $Q$ at $x=0.1$. The blue dashed line is for the BLNY fit, and the red solid line for a KN fit with $b_{\text {max }}=1.5 \mathrm{GeV}^{-1}$. The dot represents the value needed for SIDIS at HERMES.

From Collins, I409.5408 based on P. Sun \& F.Yuan, PRD 88 (20I3) 0340 I6
BLNY = Brock, Landry, Nadolsky, C.-P.Yuan, PRD67 (2003) 073016
KN = Konychev \& Nadolsky, PLB 633 (2006) 710

## Further resummations

$$
\begin{gathered}
\tilde{F}\left(x, b_{T} ; \zeta_{f}, \mu_{f}\right)=\tilde{R}\left(b_{T} ; \zeta_{i}, \mu_{i}, \zeta_{f}, \mu_{f}\right) \tilde{F}\left(x, b_{T} ; \zeta_{i}, \mu_{i}\right) \\
\tilde{R}\left(b_{T} ; \zeta_{i}, \mu_{i}, \zeta_{f}, \mu_{f}\right)=\exp \left\{\int_{\mu_{i}}^{\mu_{f}} \frac{d \bar{\mu}}{\bar{\mu}} \gamma_{F}\left(\alpha_{s}(\bar{\mu}), \ln \frac{\zeta_{f}}{\bar{\mu}^{2}}\right)\right\}\left(\frac{\zeta_{f}}{\zeta_{i}}\right)^{-D\left(b_{T} ; \mu_{i}\right)} \\
D\left(b_{T}, \mu\right)=-\frac{1}{2} \tilde{K}\left(b_{T}, \mu\right) \quad \frac{d D\left(b_{T}, \mu\right)}{d \ln \mu}=\Gamma_{\text {cusp }}=\frac{1}{2} \gamma_{K} \\
D^{R}\left(b_{T} ; \mu\right)=-\frac{\Gamma_{0}}{2 \beta_{0}} \ln (1-X)+\frac{1}{2}\left(\frac{a_{s}}{1-X}\right)\left[-\frac{\beta_{1} \Gamma_{0}}{\beta_{0}^{2}}(X+\ln (1-X))+\frac{\Gamma_{1}}{\beta_{0}} X\right] \\
+\frac{1}{2}\left(\frac{a_{s}}{1-X}\right)^{2}\left[2 d_{2}(0)+\frac{\Gamma_{2}}{2 \beta_{0}}(X(2-X))+\frac{\beta_{1} \Gamma_{1}}{2 \beta_{0}^{2}}(X(X-2)-2 \ln (1-X))+\frac{\beta_{2} \Gamma_{0}}{2 \beta_{0}^{2}} X^{2}\right. \\
\left.+\frac{\beta_{1}^{2} \Gamma_{0}}{2 \beta_{0}^{3}}\left(\ln ^{2}(1-X)-X^{2}\right)\right]
\end{gathered}
$$

where we have used the notation

$$
a_{s}=\frac{\alpha_{s}(\mu)}{4 \pi}, \quad X=a_{s} \beta_{0} L_{T}, \quad L_{T}=\ln \frac{\mu^{2} b_{T}^{2}}{4 e^{-2 \gamma_{E}}}=\ln \frac{\mu^{2}}{\mu_{b}^{2}} .
$$

Echevarria, Idilbi, Schäfer, Scimemi, EPJC 73 (2013) 2636

Convergence fails as b approaches $\mathrm{b} \times$ which to leading order is $b_{X}=\frac{C_{1}}{\mu_{i}} \exp \left(\frac{2 \pi}{\beta_{0} \alpha_{s}\left(\mu_{i}\right)}\right)$

(a)

(b)

Fig. 1 Resummed $D$ at $Q_{i}=\sqrt{2.4} \mathrm{GeV}$ with $n_{f}=4$ (a) and $Q_{i}=5 \mathrm{GeV}$ with $n_{f}=5$ (b)
Echevarria, Idilbi, Schäfer, Scimemi, EPJC 73 (20I3) 2636


Fig. 3 Resummed $D\left(b ; Q_{i}=\sqrt{2.4}\right)$ at LL of Eqs. (25), (a), and (26), (b), with the running of the strong coupling at various orders and decoupling coefficients included

Evolutor $R$ vanishes well before $b \sim b x$ if $Q_{f} \gg Q_{i}$, reduces need for large $b$ regularization


Fig. 4 Evolution kernel from $Q_{i}=\sqrt{2.4} \mathrm{GeV}$ up to $Q_{f}=\{\sqrt{3}, 5,10,91.19\} \mathrm{GeV}$ using ours and CSS approaches, both at NNLL Echevarria, Idilbi, Schäfer, Scimemi, EPJC 73 (2013) 2636
This approach favors $\mathrm{b}_{\max }=1.5 \mathrm{GeV}^{-1}$

## Further resummations



Resummed TMD at low scales very small at large $b_{\mathrm{T}}$ where $\alpha_{\mathrm{s}}\left(\mu_{\mathrm{b}}\right)$ is very large

## New approach to Landau pole problem



Sensitivity to Landau pole minimized by using $\mathrm{Q}_{\mathrm{i}}=\mathrm{Q}_{0}+\mathrm{q}_{\mathrm{T}}$ rather than $\mu_{\mathrm{b}}$

Correspondingly a new $\mathrm{F}^{\mathrm{NP}}$ form is considered

High $Q$ data ( $D Y / Z$ ) need only $\lambda_{1} \& \lambda_{2}$ Low $Q$ (SIDIS) needs modification $\left(\lambda_{3}\right)$
$\tilde{F}_{q / N}^{\mathrm{NP}}\left(x, b_{T} ; Q\right)=e^{-\lambda_{1} b_{T}}\left(1+\lambda_{2} b_{T}^{2}\right)\left(\frac{Q^{2}}{Q_{0}^{2}}\right)^{-\frac{\lambda_{3}}{2} b_{T}^{2}}$

## TMD evolution

## Large $\mathrm{p}_{\mathrm{T}}$ tail

Factorization dictates the evolution:
Under evolution TMDs develop a power law tail
Up Quark TMD PDF, $x=.09, \mathrm{Q}=91.19 \mathrm{GeV}$


Aybat \& Rogers, PRD 83 (20II) II4042

## Evolution of Sivers function

TMDs and their asymmetries become broader and smaller with increasing energy


D'Alesio, A.Kotzinian, S.Melis, F.
Murgia,A. Prokudin, C.Turk; 2009

Aybat \& Rogers, PRD 83 (201 I) II4042
Aybat, Collins, Qiu, Rogers, PRD 85 (2012) 034043

## Comparing TMD and DGLAP evolution




Anselmino, Boglione, Melis PRD 86 (2012) 014028

All curves evolved from $\mathrm{Q}^{2}=1 \mathrm{GeV}^{2}$



Makes quite a difference in this limited range of Q: from 1.5 to 4.5 GeV
$S_{\text {NP }}$ dominates evolution

## TMD evolution of azimuthal asymmetries

- Sivers effect in SIDIS and DY
[Idilbi, Ji, Ma \& Yuan, 2004;Aybat, Prokudin \& Rogers, 20I2;Anselmino, Boglione, Melis, 20I2;
Sun \& Yuan, 2013; D.B., 2013; Echevarria, Idilbi, Kang \& Vitev, 2014]
- Collins effect in $\mathrm{e}^{+} \mathrm{e}^{-}$and SIDIS
[D.B., 200I \& 2009; Echevarria, Idilbi, Scimemi, 20I4]
- Sivers effect in J/ $\Psi$ production
[Godbole, Misra, Mukherjee, Rawoot, 20I3; Godbole, Kaushik, Misra, Rawoot, 20I4]

Main differences among the various approaches:

- treatment of nonperturbative Sudakov factor
- treatment of leading logarithms, i.e. the level of perturbative accuracy


## TMD evolution

## of the Sivers asymmetry

## Sivers Asymmetry



HERMES data (<Q²> ~ 2.4 GeV²) mostly above COMPASS data (<Q²> ~ 3.8 GeV²)

## Evolution of the Sivers Asymmetry



Evolution from HERMES to COMPASS energy scale seems to work well

Aybat, Prokudin \& Rogers, PRL IO8 (20I2) 242003

This is obtained using the 2011 TMD factorization, including some approximations that should be applicable at small Q :

- $Y$ term is dropped (or equivalently the perturbative tail)
- evolve from a fixed starting $\mathrm{Q}_{0}$ rather than $\mu_{\mathrm{b}}$
- Gaussian TMDs at starting scale $Q_{0}$


## TMD evolution of the Sivers asymmetry

Under very similar assumptions, the Q dependence of the Sivers asymmetry resides in an overall factor:

$$
A_{U T}^{\sin \left(\phi_{h}-\phi_{S}\right)} \propto \mathcal{A}\left(Q_{T}, Q\right)
$$

[D.B., NPB 874 (2013) 2I7]



Observations:

- the peak of the Sivers asymmetry decreases as $\mathrm{I} / \mathrm{Q}^{0.7 \pm 0.1}$ ("Sudakov suppression")
- the peak of the asymmetry shifts slowly towards higher $\mathrm{Q}_{\mathrm{T}}$, also offers a test

Testing these features needs a larger Q range, requiring a high-energy EIC

## TMD evolution of the Sivers asymmetry



Both approaches use the same formalism (201I TMD factorization), very similar approximations and ingredients, the key difference is in the integration over $\mathrm{x}, \mathrm{z}, \mathrm{P}_{\mathrm{h} \perp}$

The integrated asymmetry falls off fast, not of form $I / Q^{\alpha}$, but in the considered range it falls off faster than I/Q but slower than I/Q2

## TMD evolution of the Sivers asymmetry

At low $\mathrm{Q}^{2}$ (up to $\sim 20 \mathrm{GeV}^{2}$ ), the $\mathrm{Q}^{2}$ evolution is dominated by $\mathrm{S}_{\mathrm{NP}}$ [Anselmino, Boglione, Melis,PRD 86 (2012) 0I4028]

```
Q2}\mathrm{ dependence of
Sivers asymmetry
Test of TMDs evolution
```



Precise low $Q^{2}$ data can help to determine the form and size of $S_{\mathrm{NP}}$

Uncertainty in $S_{N P}$ determines the $\pm 0.1$ in $\mathrm{I} / \mathrm{Q}^{0.7 \pm 0.1}$

## TMD evolution of Collins asymmetries

## Collins Effect

Collins effect is described by a TMD fragmentation function: [NPB 396 (1993) I6I]

$$
\mathrm{H}_{1}^{\perp}=\frac{\mathrm{S}_{\mathrm{T}}}{\pi-\pi-1 \mathrm{k}_{\mathrm{T}}}
$$

## Collins Effect

Collins effect is described by a TMD fragmentation function: [NPB 396 (1993) 16I]


It gives rise to a $\sin \left(\varphi_{\mathrm{h}}+\varphi_{\mathrm{s}}\right)$ asymmetry in SIDIS:
$\frac{d \sigma\left(e p^{\uparrow} \rightarrow e^{\prime} \pi X\right)}{d \phi_{\pi}^{e} d\left|\boldsymbol{P}_{\perp}^{\pi}\right|^{2}} \propto\left\{1+\left|\boldsymbol{S}_{T}\right| \sin \left(\phi_{\pi}^{e}-\phi_{S}^{e}\right) f_{1 T}^{\perp} D_{1}+\left|\boldsymbol{S}_{T}\right| \sin \left(\phi_{\pi}^{e}+\phi_{S}^{e}\right) h_{1} H_{1}^{\perp}\right\}$

## Collins Effect

Collins effect is described by a TMD fragmentation function: [NPB 396 (1993) 16I]


It gives rise to a $\sin \left(\varphi_{\mathrm{h}}+\varphi_{\mathrm{s}}\right)$ asymmetry in SIDIS:
transversity $\otimes$
Collins function $\left.\frac{d \sigma\left(e p^{\uparrow} \rightarrow e^{\prime} \pi X\right)}{d \phi_{\pi}^{e} d\left|\boldsymbol{P}_{\perp}^{\pi}\right|^{2}} \propto\left\{1+\left|\boldsymbol{S}_{T}\right| \sin \left(\phi_{\pi}^{e}-\phi_{S}^{e}\right) f_{1 T}^{\perp} D_{1}+\left|\boldsymbol{S}_{T}\right| \sin \left(\phi_{\pi}^{e}+\phi_{S}^{e}\right) h_{1} H_{1}^{\perp}\right)\right\}$

## Collins Asymmetry in SIDIS



No clear need for TMD evolution from HERMES to COMPASS

## Double Collins Effect

The Collins fragmentation function provides a way to probe transversity $\left(h_{1}\right)$, if measured independently in another process


Double Collins effect gives rise to a $\cos 2 \varphi$ asymmetry in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{h}_{1} \mathrm{~h}_{2} \mathrm{X}$ [D.B., Jakob, Mulders, NPB 504 (I 997) 345]
Clearly observed in experiment by BELLE (R. Seidl et al., PRL '06; PRD '08) and BaBar (I. Garzia at Transversity 201 I \& J.P. Lees et al., arXiv: I 309.527)

## Double Collins Effect

The Collins fragmentation function provides a way to probe transversity $\left(h_{1}\right)$, if measured independently in another process



Anselmino et al., PRD 87 (2013) 094019
Double Collins effect gives rise to a $\cos 2 \varphi$ asymmetry in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{h}_{1} \mathrm{~h}_{2} \mathrm{X}$ [D.B., Jakob, Mulders, NPB 504 (I 997) 345]
Clearly observed in experiment by BELLE (R. Seidl et al., PRL '06; PRD '08) and BaBar (I. Garzia at Transversity 20 I I \& J.P. Lees et al., arXiv: I 309.527)

## Double Collins Asymmetry

$$
\frac{d \sigma\left(e^{+} e^{-} \rightarrow h_{1} h_{2} X\right)}{d z_{1} d z_{2} d \Omega d^{2} \boldsymbol{q}_{T}} \propto\left\{1+\cos 2 \phi_{1} A\left(\boldsymbol{q}_{T}\right)\right\}
$$

Under similar assumptions as for the Sivers asymmetry:

$$
A\left(Q_{T}\right)=\frac{\sum_{a} e_{a}^{2} \sin ^{2} \theta H_{1}^{\perp(1) a}\left(z_{1} ; Q_{0}\right) \bar{H}_{1}^{\perp(1) a}\left(z_{2} ; Q_{0}\right)}{\sum_{b} e_{b}^{2}\left(1+\cos ^{2} \theta\right) D_{1}^{b}\left(z_{1} ; Q_{0}\right) \bar{D}_{1}^{b}\left(z_{2} ; Q_{0}\right)} \mathcal{A}\left(Q_{T}\right)
$$




Considerable Sudakov suppression ~I/Q (effectively twist-3)
D.B., NPB 603 (200I) I95 \& NPB 806 (2009) 23 \& NPB 874 (20I3) 217 \& arXiv:I308.4262

## Next steps

Peak of the asymmetry shifts slowly towards higher $\mathrm{Q}_{\mathrm{T}}$, offers a test


Data from charm factory (BEPC) important by providing data around $\mathrm{Q} \approx 4 \mathrm{GeV}$

## Next steps

Peak of the asymmetry shifts slowly towards higher $\mathrm{Q}_{\mathrm{T}}$, offers a test


Data from charm factory (BEPC) important by providing data around $\mathrm{Q} \approx 4 \mathrm{GeV}$

## Next steps

Peak of the asymmetry shifts slowly towards higher $\mathrm{Q}_{\mathrm{T}}$, offers a test


Data from charm factory (BEPC) important by providing data around $\mathrm{Q} \approx 4 \mathrm{GeV}$

The I/Q behavior should modify the transversity extraction using Collins effect, full TMD evolution still to be implemented (for $\mathrm{Q} \sim 10 \mathrm{GeV} \mathrm{S}_{\text {pert }}$ is important)

Need to check the TMD evolution of the Collins asymmetry in SIDIS, which is slower than that of the double Collins asymmetry (Jefferson Lab \& possibly EIC)

## Double Collins Asymmetry

## Data from BES important by providing data at lower Q



FIG. 4 (color online). The Collins asymmetries in di-hadron azimuthal angular distributions in $e^{+} e^{-}$annihilation processes: fit to the BELLE experiment at $\sqrt{S}=10.6 \mathrm{GeV}$ Ref. [8], and predictions for the experiment at BEPC at $\sqrt{S}=4.6 \mathrm{GeV}$.
P. Sun \& F.Yuan, PRD 88 (2013) 034016

One does have to worry about I/Q ${ }^{2}$ corrections (analogue of the Cahn effect), which can be bounded by study simultaneously the I/Q $\cos \varphi$ asymmetry
E.L. Berger, ZPC 4 (I980) 289; Brandenburg, Brodsky, Khoze \& D. Mueller, PRL 73 (I994) 939

## Higgs transverse momentum distribution

## Higgs transverse momentum



The transverse momentum distribution in Higgs production at LHC is also a TMD factorizing process
P. Sun, B.-W. Xiao \& F.Yuan, PRD 84 (20II) 094005

In this case starting the evolution from a fixed scale $\mathrm{Q}_{0}$ is not appropriate due to the large $\mathrm{Q} / \mathrm{Q}_{0}$ ratio

The linear polarization of gluons inside the unpolarized protons plays a role [Catani \& Grazzini, 'IO; D.B., Den Dunnen, Pisano, Schlegel, Vogelsang,' 12 ]

## TMD factorization expressions

$$
\frac{d \sigma}{d x_{A} d x_{B} d \Omega d^{2} \boldsymbol{q}_{T}}=\int d^{2} b e^{-i \boldsymbol{b} \cdot \boldsymbol{q}_{T}} \tilde{W}\left(\boldsymbol{b}, Q ; x_{A}, x_{B}\right)+\mathcal{O}\left(\frac{Q_{T}^{2}}{Q^{2}}\right)
$$

$\tilde{W}\left(\boldsymbol{b}, Q ; x_{A}, x_{B}\right)=\tilde{f}_{1}^{g}\left(x_{A}, \boldsymbol{b}^{2} ; \zeta_{A}, \mu\right) \tilde{f}_{1}^{g}\left(x_{B}, \boldsymbol{b}^{2} ; \zeta_{B}, \mu\right) H(Q ; \mu)$

## TMD factorization expressions

$$
\frac{d \sigma}{d x_{A} d x_{B} d \Omega d^{2} \boldsymbol{q}_{T}}=\int d^{2} b e^{-i \boldsymbol{b} \cdot \boldsymbol{q}_{T}} \tilde{W}\left(\boldsymbol{b}, Q ; x_{A}, x_{B}\right)+\mathcal{O}\left(\frac{Q_{T}^{2}}{Q^{2}}\right)
$$

$\tilde{W}\left(\boldsymbol{b}, Q ; x_{A}, x_{B}\right)=\tilde{f}_{1}^{g}\left(x_{A}, \boldsymbol{b}^{2} ; \zeta_{A}, \mu\right) \tilde{f}_{1}^{g}\left(x_{B}, \boldsymbol{b}^{2} ; \zeta_{B}, \mu\right) H(Q ; \mu)$

This is a naive expression, since gluons can be polarized inside unpolarized protons [Mulders, Rodrigues ' 0 I]

$$
\begin{aligned}
\Phi_{g}^{\mu \nu}\left(x, \boldsymbol{p}_{T}\right) & \left.=\frac{n_{\rho} n_{\sigma}}{(p \cdot n)^{2}} \int \frac{d(\xi \cdot P) d^{2} \xi_{T}}{(2 \pi)^{3}} e^{i p \cdot \xi}\langle P| \operatorname{Tr}\left[F^{\mu \rho}(0) F^{\nu \sigma}(\xi)\right]|P\rangle\right\rfloor_{\mathrm{LF}} \\
& =-\frac{1}{2 x}\left\{g_{T}^{\mu \nu} f_{1}^{g}-\left(\frac{p_{T}^{\mu} p_{T}^{\nu}}{M^{2}}+g_{T}^{\mu \nu} \frac{\boldsymbol{p}_{T}^{2}}{2 M^{2}}\right) h_{1}^{\perp g}\right\}
\end{aligned}
$$

Second term requires nonzero $\mathrm{k}_{\mathrm{T}}$, but is $\mathrm{k}_{\mathrm{T}}$ even, chiral even and T even

$$
\tilde{\Phi}_{g}^{i j}(x, \boldsymbol{b})=\frac{1}{2 x}\left\{\delta^{i j} \tilde{f}_{1}^{g}\left(x, b^{2}\right)-\left(\frac{2 b^{i} b^{j}}{b^{2}}-\delta^{i j}\right) \tilde{h}_{1}^{\perp g}\left(x, b^{2}\right)\right\}
$$

## Cross section

$$
\begin{aligned}
&\left.\frac{E d \sigma^{p p \rightarrow H X}}{d^{3} \vec{q}}\right|_{q_{T}<m_{H}}=\frac{\pi \sqrt{2} G_{F}}{128 m_{H}^{2} s}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left|\mathcal{A}_{H}(\tau)\right|^{2} \\
& \times\left(\mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right]+\mathcal{C}\left[w_{H} h_{1}^{\perp g} h_{1}^{\perp g}\right]\right)+\mathcal{O}\left(\frac{q_{T}}{m_{H}}\right) \\
& w_{H}=\frac{\left(\boldsymbol{p}_{T} \cdot \boldsymbol{k}_{T}\right)^{2}-\frac{1}{2} \boldsymbol{p}_{T}^{2} \boldsymbol{k}_{T}^{2}}{2 M^{4}} \quad \tau=m_{H}^{2} /\left(4 m_{t}^{2}\right)
\end{aligned}
$$

The relative effect of linearly polarized gluons:

$$
\begin{gathered}
\mathcal{R}\left(Q_{T}\right) \equiv \frac{\mathcal{C}\left[w_{H} h_{1}^{\perp g} h_{1}^{\perp g}\right]}{\mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right]} \\
\mathcal{R}\left(Q_{T}\right)=\frac{\int d^{2} \boldsymbol{b} e^{i b \cdot \boldsymbol{q}_{T}} e^{-S_{A}\left(b_{*}, Q\right)-S_{N P}(b, Q)} \tilde{h}_{1}^{\perp g}\left(x_{A}, b_{*}^{2} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}\right) \tilde{h}_{1}^{\perp g}\left(x_{B}, b_{*}^{2} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}\right)}{\int d^{2} \boldsymbol{b} e^{i b \cdot \boldsymbol{q}_{T}} e^{-S_{A}\left(b_{*}, Q\right)-S_{N P}(b, Q) \tilde{f}_{1}^{g}\left(x_{A}, b_{*}^{2} ; \mu_{b_{*}}, \mu_{b_{*}}\right) \tilde{f}_{1}^{g}\left(x_{B}, b_{*}^{2} ; \mu_{b_{*} *}^{2}, \mu_{b_{*}}\right)}}
\end{gathered}
$$

## CSS approach

Consider now only the perturbative tails:
$\tilde{f}_{1}^{g}\left(x, b^{2} ; \mu_{b}^{2}, \mu_{b}\right)=f_{g / P}\left(x ; \mu_{b}\right)+\mathcal{O}\left(\alpha_{s}\right)$
$\tilde{h}_{1}^{\perp g}\left(x, b^{2} ; \mu_{b}^{2}, \mu_{b}\right)=\frac{\alpha_{s}\left(\mu_{b}\right) C_{A}}{2 \pi} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}}\left(\frac{\hat{x}}{x}-1\right) f_{g / P}\left(\hat{x} ; \mu_{b}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)$
This coincides with the CSS approach
[Nadolsky, Balazs, Berger, C.-P.Yuan, '07; Catani, Grazzini, 'IO; P. Sun, B.-W. Xiao, F.Yuan, 'II]

$$
\text { PHYSICAL REVIEW D 86, } 094026 \text { (2012) }
$$

## Improved resummation prediction on Higgs boson production at hadron colliders

Jian Wang, ${ }^{1}$ Chong Sheng Li, ${ }^{1,2, *}$ Hai Tao Li, ${ }^{1}$ Zhao Li, ${ }^{3, \dagger}$ and C.-P. Yuan ${ }^{2,3, \ddagger}$

They find permille level effects at the Higgs scale, but using the TMD approach at the LL level yields percent level effects
D.B. \& den Dunnen, NPB 886 (2014) 42 I

Wang et al. also use a different $S_{N P}$

TMD / CSS evolution effects

$x_{A}=x_{B}=Q /(8 \mathrm{TeV})$
MSTW08 LO gluon distribution
D.B. \& den Dunnen, NPB 886 (2014) 42 I

## Beyond CSS

In the TMD factorized expression there may be nonperturbative contributions from small PT which mainly affect large b

CSS only allows NP contribution via $S_{N P}$ and does not allow all possibilities of the TMD approach

To illustrate this we consider a model which is approximately Gaussian at low PT and has the correct tail at high PT or small b


## Comparison



## Very small b region

At low $Q$ there is quite some uncertainty from the very small b region ( $b \ll I / Q$ ) where the perturbative expressions for $S_{A}$ are all incorrect (don't satisfy $S(0)=0$ )


Standard regularization:

$$
Q^{2} / \mu_{b}^{2}=b^{2} Q^{2} / b_{0}^{2} \rightarrow Q^{2} / \mu_{b}^{\prime 2} \equiv\left(b Q / b_{0}+1\right)^{2}
$$

## Very small b region

For very small b region ( $\mathrm{b} \ll \mathrm{I} / \mathrm{Q}$ ) the perturbative expressions for $\mathrm{S}_{\mathrm{A}}$ are all incorrect
$S_{A}(b, Q)=\frac{C_{A}}{\pi} \int_{\mu_{b}^{2}}^{Q^{2}} \frac{d \mu^{2}}{\mu^{2}} \alpha_{s}(\mu)[\ldots] \xrightarrow{b \ll 1 / Q}-\frac{C_{A}}{\pi} \int_{Q^{2}}^{\mu_{b}^{2}} \frac{d \mu^{2}}{\mu^{2}} \alpha_{s}(\mu)[\ldots]$

Sudakov suppression ( $\mathrm{e}^{-\#}$ ) becomes an unphysical Sudakov enhancement ( $\mathrm{e}^{+\#}$ )

## Very small b region

For very small b region ( $b \ll I / Q$ ) the perturbative expressions for $S_{A}$ are all incorrect

$$
S_{A}(b, Q)=\frac{C_{A}}{\pi} \int_{\mu_{b}^{2}}^{Q^{2}} \frac{d \mu^{2}}{\mu^{2}} \alpha_{s}(\mu)[\ldots] \stackrel{b \ll 1 / Q}{\rightarrow}-\frac{C_{A}}{\pi} \int_{Q^{2}}^{\mu_{b}^{2}} \frac{d \mu^{2}}{\mu^{2}} \alpha_{s}(\mu)[\ldots]
$$

Sudakov suppression $\left(\mathrm{e}^{-\#}\right)$ becomes an unphysical Sudakov enhancement ( $\mathrm{e}^{+\#}$ )

$$
\frac{d \sigma}{d q_{T}^{2}}=Y\left(q_{T}^{2}\right)+\int \frac{d^{2} \mathbf{b}}{4 \pi} e^{-i \boldsymbol{q}_{T} \cdot \mathbf{b}} \sigma_{0}(1+A) \exp S(b)
$$

where

$$
A_{T}^{2}=A_{T}^{2}(y)=\frac{\left(S+Q^{2}\right)^{2}}{4 S \cosh ^{2} y}-Q^{2}
$$

$$
S(b)=\int_{0}^{A_{T}^{2}} \frac{d k^{2}}{k^{2}}\left(J_{0}(b k)-1\right)\left(B \ln \frac{Q^{2}}{k^{2}}+C\right)
$$

$$
\exp S=\exp \int_{0}^{A_{T}^{2}} \approx\left(1+\int_{Q^{2}}^{A_{T}^{2}}\right) \exp \int_{0}^{Q^{2}}
$$

Altarelli, Ellis, Martinelli, 1985
Does satisfy $S(0)=0$
Not yet clear what is the exact expression to take in TMD factorization

## Higher twist

## $P_{T}$ and $Q^{2}$-dep Higher Twist $A_{L U}{ }^{\sin \phi}$




## Conclusions

## Conclusions

- Significant recent developments on TMD factorization and evolution:
- New TMD factorization expressions by JCC (2011) \& EIS (2012)
- Improvements through additional resummations (Echevarria et al.) lifts analyses to the NNLL level (2013/4)
- Progress towards describing SIDIS, DY \& Z production data by a universal non-perturbative function (2013/4)
- Consequences of TMD evolution studied (in varying levels of accuracy) for:
- Sivers \& (single and double) Collins effect asymmetries
- Higgs production including the effect of linear gluon polarization
- Future data from JLab12 and BES and perhaps a high-energy EIC can help to map out the $Q$ dependence of Sivers and Collins asymmetries in greater detail
- Future data from LHC on Higgs and $\chi_{\mathrm{c} / b 0}$ production could do the same for gluon dominated TMD processes
- TMD (non-)factorization at next-to-leading twist remains entirely unexplored


## Back-up slides

## Further resummations

For the TMD at small b one often considers the perturbative tail, which is calculable
$\tilde{f}_{g / P}\left(x, b^{2} ; \mu, \zeta\right)=\sum_{i=g, q} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}} C_{i / g}\left(x / \hat{x}, b^{2} ; g(\mu), \mu, \zeta\right) f_{i / P}(\hat{x} ; \mu)+\mathcal{O}\left(\left(\Lambda_{\mathrm{QCD}} b\right)^{a}\right)$

To extend it to be valid at larger b values one can perform further resummation:

$$
\begin{gathered}
\tilde{F}_{q / N}^{\mathrm{pert}}\left(x, b_{T} ; \zeta, \mu\right)=\left(\frac{\zeta b_{T}^{2}}{4 e^{-2 \gamma_{E}}}\right)^{-D^{R}\left(b_{T} ; \mu\right)} e^{h_{\Gamma}^{R}\left(b_{T} ; \mu\right)-h_{\gamma}^{R}\left(b_{T} ; \mu\right)} \sum_{j} \int_{x}^{1} \frac{d z}{z} \hat{C}_{q \leftarrow j}\left(x / z, b_{T} ; \mu\right) f_{j / N}(z ; \mu) \\
\tilde{F}_{q / N}\left(x, b_{T} ; Q_{i}^{2}, \mu_{i}\right)=\tilde{F}_{q / N}^{\text {pert }}\left(x, b_{T} ; Q_{i}^{2}, \mu_{i}\right) \tilde{F}_{q / N}^{\mathrm{NP}}\left(x, b_{T} ; Q_{i}\right) \\
\tilde{F}_{q / N}^{\mathrm{NP}}\left(x, b_{T} ; Q_{i}\right) \equiv \tilde{F}_{q / N}^{\mathrm{NP}}\left(x, b_{T}\right)\left(\frac{Q_{i}^{2}}{Q_{0}^{2}}\right)^{-D^{\mathrm{NP}}\left(b_{T}\right)}
\end{gathered}
$$

## Tool to compare different methods: The $L$ function

(JCC \& Rogers, in preparation)

- Shape change of transverse momentum distribution comes only from $b_{\mathrm{T}}$-dependence of $\tilde{K}$
- So define scheme independent

$$
L\left(b_{\mathrm{T}}\right)=-\frac{\partial}{\partial \ln b_{\mathrm{T}}^{2}} \frac{\partial}{\partial \ln Q^{2}} \ln \tilde{W}\left(b_{\mathrm{T}}, Q, x_{A}, x_{B}\right) \stackrel{\mathrm{CSS}}{=}-\frac{\partial}{\partial \ln b_{\mathrm{T}}^{2}} \tilde{K}\left(b_{\mathrm{T}}, \mu\right)
$$

- QCD predicts it is
- independent of $Q, x_{A}, x_{B}$
- independent of light-quark flavor
- RG invariant
- perturbatively calculable at small $b_{\mathrm{T}}$
- non-perturbative at large $b_{\mathrm{T}}$

Collins, QCD Evolution workshop, May 12, 2014
L is called A in Collins, I 409.5408

## Comparing different results using the $L$ function

(Preliminary)


| $Q$ | Typical $b_{\mathrm{T}}$ |
| :--- | :--- |
| 2 GeV | $3 \mathrm{GeV}^{-1}$ |
| 10 GeV | $1.2 \mathrm{GeV}^{-1}$ |
| $m_{Z}$ | $0.5 \mathrm{GeV}^{-1}$ |



SY = Sun \& Yuan (PRD 88, 114012 (2013)):

$$
L_{\mathrm{SY}}=C_{F} \frac{\alpha_{s}(Q)}{\pi}
$$

Depends on $Q$ : contrary to QCD

## Sivers asymmetry expression

$\mathcal{A}_{a b}\left(x, z, Q_{T}\right) \equiv \frac{\int d b b^{2} J_{1}\left(b Q_{T}\right) \tilde{f}_{1 T}^{\perp{ }^{a}}\left(x, b_{*}^{2} ; Q_{0}^{2}, Q_{0}\right) \tilde{D}_{1}^{a}\left(z, b_{*}^{2} ; Q_{0}^{2}, Q_{0}\right) \exp \left(-S_{p}\left(b_{*}, Q, Q_{0}\right)-S_{N P}\left(b, Q / Q_{0}\right)\right)}{M Q_{T} \int d b b J_{0}\left(b Q_{T}\right) \tilde{f}_{1}^{b}\left(x, b_{*}^{2} ; Q_{0}^{2}, Q_{0}\right) \tilde{D}_{1}^{b}\left(z, b_{*}^{2} ; Q_{0}^{2}, Q_{0}\right) \exp \left(-S_{p}\left(b_{*}, Q, Q_{0}\right)-S_{N P}\left(b, Q / Q_{0}\right)\right)}$

Assume that the TMDs of $b *$ are slowly varying functions of $b$ in the dominant b region $\left(b \sim I / Q_{T} \gg I / Q\right.$, hence $\left.b_{*} \approx b_{\max }=I / Q_{0}\right): \Phi\left(x, b_{*}\right) \approx \Phi\left(z, I / Q_{0}\right)$

This approximation means dropping the perturbative tail of TMDs and leads to a decoupling of $x$ and $b$ dependence

$$
\begin{gathered}
\mathcal{A}_{a b}\left(x, z, Q_{T}\right)=\frac{f_{1 T}^{\perp \prime} a}{M^{2} f_{1}^{b}\left(x ; Q_{0}\right) D_{1}^{a}\left(z ; Q_{0}\right) D_{1}^{b}\left(z ; Q_{0}\right)} \mathcal{A}\left(Q_{T}\right) \\
\mathcal{A}\left(Q_{T}\right) \equiv M \frac{\int d b b^{2} J_{1}\left(b Q_{T}\right) \exp \left(-S_{p}\left(b_{*}, Q, Q_{0}\right)-S_{N P}\left(b, Q / Q_{0}\right)\right)}{\int d b b J_{0}\left(b Q_{T}\right) \exp \left(-S_{p}\left(b_{*}, Q, Q_{0}\right)-S_{N P}\left(b, Q / Q_{0}\right)\right)}
\end{gathered}
$$

DB, NPB 874 (2013) 217
Under this assumption, the same factor appears in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow h_{1} h_{2} \mathrm{X}$, SIDIS and DY and in all asymmetries involving one $b$-odd TMD, such as the Collins asymmetry

Claim: this captures the dominant Q dependence for $\mathrm{Q}_{\mathrm{T}}$ and Q not too large

## TMD factorization expressions

Differential cross section of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{h}_{1} \mathrm{~h}_{2} \mathrm{X}$ process at small $\mathrm{Q}_{\mathrm{T}}$ :

$$
\begin{aligned}
\frac{d \sigma}{d z_{1} d z_{2} d \Omega d^{2} q_{T}}= & \int d^{2} b e^{-i b \cdot q_{T}} \tilde{W}\left(b, Q ; z_{1}, z_{2}\right)+\mathcal{O}\left(Q_{T}^{2} / Q^{2}\right) \\
\tilde{W}\left(b, Q ; z_{1}, z_{2}\right)= & \sum_{a, b} \tilde{D}_{1}^{a}\left(z_{1}, b ; Q_{0}, \alpha_{s}\left(Q_{0}\right)\right) \tilde{D}_{1}^{b}\left(z_{2}, b ; Q_{0}, \alpha_{s}\left(Q_{0}\right)\right) \\
& \times e^{-S\left(b, Q, Q_{0}\right)} H_{a b}\left(Q ; \alpha_{s}(Q)\right) \quad b=|\boldsymbol{b}|
\end{aligned}
$$

TMDs are taken at a fixed scale $Q_{0}$, the smallest perturbative scale

$$
\tilde{\Delta}(z, \boldsymbol{b})=\frac{M}{4}\left\{\tilde{D}_{1}\left(z, b^{2}\right) \frac{P}{M}+\left(\frac{\partial}{\partial b^{2}} \tilde{H}_{1}^{\perp}\left(z, b^{2}\right)\right) \frac{2 \nmid \not P}{M^{2}}\right\}
$$

Assume that the TMDs of $b *$ are slowly varying functions of $b$ in the dominant $b$ region $\left(b \sim I / Q_{\top} \gg I / Q\right.$, hence $\left.b^{*} \approx b_{\max }=I / Q_{0}\right): \Delta\left(z, b^{*}\right) \approx \Delta\left(z, I / Q_{0}\right)$
This approximation means dropping the perturbative tails and leads to a decoupling of $z$ and $b$ dependence (gives same result for SIDIS \& DY)

## Double Collins Asymmetry

$$
\frac{d \sigma\left(e^{+} e^{-} \rightarrow h_{1} h_{2} X\right)}{d z_{1} d z_{2} d \Omega d^{2} \boldsymbol{q}_{T}} \propto\left\{1+\cos 2 \phi_{1} A\left(\boldsymbol{q}_{T}\right)\right\}
$$

$$
A\left(Q_{T}\right)=\frac{\sum_{a} e_{a}^{2} \sin ^{2} \theta H_{1}^{\perp(1) a}\left(z_{1} ; Q_{0}\right) \bar{H}_{1}^{\perp(1) a}\left(z_{2} ; Q_{0}\right)}{\sum_{b} e_{b}^{2}\left(1+\cos ^{2} \theta\right) D_{1}^{b}\left(z_{1} ; Q_{0}\right) \bar{D}_{1}^{b}\left(z_{2} ; Q_{0}\right)} \mathcal{A}\left(Q_{T}\right)
$$

$$
\mathcal{A}\left(Q_{T}\right)=M^{2} \frac{\int d b b^{3} J_{2}\left(b Q_{T}\right) \exp \left(-S_{p}\left(b_{*}, Q, Q_{0}\right)-S_{N P}\left(b, Q / Q_{0}\right)\right)}{\int d b b J_{0}\left(b Q_{T}\right) \exp \left(-S_{p}\left(b_{*}, Q, Q_{0}\right)-S_{N P}\left(b, Q / Q_{0}\right)\right)}
$$




Considerable Sudakov suppression ~I/Q (effectively twist-3)
D.B., NPB 603 (200I) I 95 \& NPB 806 (2009) 23 \& NPB 874 (2013) 217 \& arXiv:I 308.4262

## Tree level expression

$$
\begin{aligned}
\left.\frac{E d \sigma^{p p \rightarrow H X}}{d^{3} \vec{q}}\right|_{q_{T} \ll m_{H}} & =\frac{\pi \sqrt{2} G_{F}}{128 m_{H}^{2} s}\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left|\mathcal{A}_{H}(\tau)\right|^{2} \\
& \times\left(\mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right]+\mathcal{C}\left[w_{H} h_{1}^{\perp g} h_{1}^{\perp g}\right]\right)+\mathcal{O}\left(\frac{q_{T}}{m_{H}}\right)
\end{aligned}
$$

The gluon TMDs enter in convolutions:

$$
\begin{gathered}
\mathcal{C}[w f f] \equiv \int d^{2} \boldsymbol{p}_{T} \int d^{2} \boldsymbol{k}_{T} \delta^{2}\left(\boldsymbol{p}_{T}+\boldsymbol{k}_{T}-\boldsymbol{q}_{T}\right) w\left(\boldsymbol{p}_{T}, \boldsymbol{k}_{T}\right) f\left(x_{A}, \boldsymbol{p}_{T}^{2}\right) f\left(x_{B}, \boldsymbol{k}_{T}^{2}\right) \\
w_{H}=\frac{\left(\boldsymbol{p}_{T} \cdot \boldsymbol{k}_{T}\right)^{2}-\frac{1}{2} \boldsymbol{p}_{T}^{2} \boldsymbol{k}_{T}^{2}}{2 M^{4}}
\end{gathered}
$$

The relative effect of linearly polarized gluons:

$$
\mathcal{R}\left(Q_{T}\right) \equiv \frac{\mathcal{C}\left[w_{H} h_{1}^{\perp g} h_{1}^{\perp g}\right]}{\mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right]}
$$

## Beyond tree level

$$
\begin{aligned}
\mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right] & =\int \frac{d^{2} \boldsymbol{b}}{(2 \pi)^{2}} e^{i \boldsymbol{b} \cdot \boldsymbol{q}_{T}} \tilde{f}_{1}^{g}\left(x_{A}, b^{2} ; \zeta_{A}, \mu\right) \tilde{f}_{1}^{g}\left(x_{B}, b^{2} ; \zeta_{B}, \mu\right) \\
& =\int \frac{d^{2} \boldsymbol{b}}{(2 \pi)^{2}} e^{i \boldsymbol{b} \cdot \boldsymbol{q}_{T}} e^{-S_{A}(b, Q)} \tilde{f}_{1}^{g}\left(x_{A}, b^{2} ; \mu_{b}^{2}, \mu_{b}\right) \tilde{f}_{1}^{g}\left(x_{B}, b^{2} ; \mu_{b}^{2}, \mu_{b}\right)
\end{aligned}
$$

Perturbative Sudakov factor:

$$
\begin{aligned}
S_{A}(b, Q)= & \frac{C_{A}}{\pi} \int_{\mu_{b}^{2}}^{Q^{2}} \frac{d \mu^{2}}{\mu^{2}} \alpha_{s}(\mu)\left[\ln \left(\frac{Q^{2}}{\mu^{2}}\right)-\frac{11-2 n_{f} / C_{A}}{6}\right]+\mathcal{O}\left(\alpha_{s}^{2}\right) \\
= & -\frac{36}{33-2 n_{f}}\left[\ln \left(\frac{Q^{2}}{\mu_{b}^{2}}\right)+\ln \left(\frac{Q^{2}}{\Lambda^{2}}\right) \ln \left(1-\frac{\ln \left(Q^{2} / \mu_{b}^{2}\right)}{\ln \left(Q^{2} / \Lambda^{2}\right)}\right)\right. \\
& \left.+\frac{11-2 n_{f} / C_{A}}{6} \ln \left(\frac{\ln \left(Q^{2} / \Lambda^{2}\right)}{\ln \left(\mu_{b}^{2} / \Lambda^{2}\right)}\right)\right]
\end{aligned}
$$

$$
\frac{d \sigma}{d x_{A} d x_{B} d \Omega d^{2} \boldsymbol{q}_{T}}=\int d^{2} b e^{-i \boldsymbol{b} \cdot \boldsymbol{q}_{T}} \tilde{W}\left(\boldsymbol{b}, Q ; x_{A}, x_{B}\right)+\mathcal{O}\left(\frac{Q_{T}^{2}}{Q^{2}}\right)
$$

The integral is over all $b$, including nonperturbatively large $b$

$$
\begin{gathered}
\tilde{W}(b) \equiv \tilde{W}\left(b_{*}\right) e^{-S_{N P}(b)} \\
b_{*}=b / \sqrt{1+b^{2} / b_{\max }^{2}} \leq b_{\max } \\
b_{\max }=1.5 \mathrm{GeV}^{-1} \Rightarrow \alpha_{s}\left(b_{0} / b_{\max }\right)=0.62
\end{gathered}
$$

No extraction of $S_{N P}$ exists, e.g. use a modified Aybat-Rogers $S_{N P}$

$$
S_{N P}\left(b, Q, Q_{0}\right)=\frac{C_{A}}{C_{F}}\left[0.184 \ln \frac{Q}{2 Q_{0}}+0.332\right] b^{2}
$$

## Beyond tree level

$$
\begin{aligned}
& \mathcal{R}\left(Q_{T}\right)= \int d^{2} \boldsymbol{b} e^{i \boldsymbol{b} \cdot \boldsymbol{q}_{T}} e^{-S_{A}\left(b_{*}, Q\right)-S_{N P}(b, Q)} \tilde{h}_{1}^{\perp g}\left(x_{A}, b_{*}^{2} ; \mu_{b_{*},}^{2}, \mu_{b_{*}}\right) \tilde{h}_{1}^{\perp g}\left(x_{B}, b_{*}^{2} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}\right) \\
& \int d^{2} \boldsymbol{b} e^{i \boldsymbol{b} \cdot \boldsymbol{q}_{T}} e^{-S_{A}\left(b_{*}, Q\right)-S_{N P}(b, Q)} \tilde{f}_{1}^{g}\left(x_{A}, b_{*}^{2} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}\right) \tilde{f}_{1}^{g}\left(x_{B}, b_{*}^{2} ; \mu_{b_{*}}^{2}, \mu_{b_{*}}\right) \\
& \tilde{h}_{1}^{\perp g}\left(x, b^{2}\right)=\int d^{2} \boldsymbol{p}_{T} \frac{\left(\boldsymbol{b} \cdot \boldsymbol{p}_{T}\right)^{2}-\frac{1}{2} \boldsymbol{b}^{2} \boldsymbol{p}_{T}^{2}}{b^{2} M^{2}} e^{-i \boldsymbol{b} \cdot \boldsymbol{p}_{T}} h_{1}^{\perp g}\left(x, p_{T}^{2}\right) \\
&=-\pi \int d p_{T}^{2} \frac{p_{T}^{2}}{2 M^{2}} J_{2}\left(b p_{T}\right) h_{1}^{\perp g}\left(x, p_{T}^{2}\right)
\end{aligned}
$$

Consider now only the perturbative tails:

$$
\tilde{f}_{1}^{g}\left(x, b^{2} ; \mu_{b}^{2}, \mu_{b}\right)=f_{g / P}\left(x ; \mu_{b}\right)+\mathcal{O}\left(\alpha_{s}\right)
$$

$\tilde{h}_{1}^{\perp g}\left(x, b^{2} ; \mu_{b}^{2}, \mu_{b}\right)=\frac{\alpha_{s}\left(\mu_{b}\right) C_{A}}{2 \pi} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}}\left(\frac{\hat{x}}{x}-1\right) f_{g / P}\left(\hat{x} ; \mu_{b}\right)+\mathcal{O}\left(\alpha_{s}^{2}\right)$
This coincides with the CSS approach
[Nadolsky, Balazs, Berger, C.-P.Yuan, ’07; Catani, Grazzini, 'IO; P. Sun, B.-W. Xiao, F.Yuan, 'II]

## Improved resummation prediction on Higgs boson production at hadron colliders

Jian Wang, ${ }^{1}$ Chong Sheng Li, ${ }^{1,2, *}$ Hai Tao Li, ${ }^{1}$ Zhao Li, ${ }^{3, \dagger}$ and C.-P. Yuan ${ }^{2,3, \#}$


FIG. 3. The ratios between the transverse momentum distributions with and without $G$ functions at the Tevatron ( 1.96 TeV ) and the $\mathrm{LHC}(7,8$, and 14 TeV ). The oscillations of the ratio curves in the figure are due to numerical uncertainties.

## Improved resummation prediction on Higgs boson production at hadron colliders

Jian Wang, ${ }^{1}$ Chong Sheng Li, ${ }^{1,2, *}$ Hai Tao Li, ${ }^{1}$ Zhao Li, ${ }^{3, \dagger}$ and C.-P. Yuan ${ }^{2,3, \ddagger}$

$$
\begin{aligned}
& \tilde{f}_{g / P}\left(x, b^{2} ; \mu, \zeta\right)=\sum_{i=g, q} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}} C_{i / g}\left(x / \hat{x}, b^{2} ; g(\mu), \mu, \zeta\right) f_{i / P}(\hat{x} ; \mu)+\mathcal{O}\left(\left(\Lambda_{\mathrm{QCD}} b\right)^{a}\right) \\
& \frac{G^{(1)} G^{(1)} \alpha_{s}^{2}+2 G^{(1)} G^{(2)} \alpha_{s}^{3}}{C^{(0)} C^{(0)}+2 C^{(0)} C^{(1)} \alpha_{s}+\left(C^{(1)} C^{(1)}+2 C^{(0)} C^{(2)}\right) \alpha_{s}^{2}} \approx \\
& \frac{G^{(1)} G^{(1)} \alpha_{s}^{2}}{C^{(0)} C^{(0)}}\left(1+\frac{2 G^{(1)} G^{(2)}}{G^{(1)} G^{(1)}} \alpha_{s}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)\left(1-\frac{2 C^{(0)} C^{(1)}}{C^{(0)} C^{(0)}} \alpha_{s}+\mathcal{O}\left(\alpha_{s}^{2}\right)\right)
\end{aligned}
$$

They include third factor, but not second
May explain suppression partly
Wang et al. use also different $S_{N P}$

## Beyond CSS

In the TMD factorized expression there may be nonperturbative contributions from small PT which mainly affect large b

The perturbative tail holds for small $b$ which is dominated by large $\mathrm{P}_{\mathrm{T}}$, but there is an intermediate region

CSS only allows NP contribution via $S_{N P}$ and does not allow all possibilities of the TMD approach

To illustrate this we consider a model which is approximately Gaussian at low PT and has the correct tail at high PT or small b:

$$
\begin{aligned}
f_{1}^{g}\left(x, p_{T}^{2}\right) & =f_{1}^{g}(x) \frac{R^{2}}{2 \pi} \frac{1}{1+p_{T}^{2} R^{2}} \quad R=2 \mathrm{GeV}^{-1} \\
h_{1}^{\perp g}\left(x, p_{T}^{2}\right) & =c f_{1}^{g}(x) \frac{M^{2} R_{h}^{4}}{2 \pi} \frac{1}{\left(1+p_{T}^{2} R_{h}^{2}\right)^{2}}
\end{aligned}
$$

To satisfy Soffer-like bound:

$$
R_{h}^{2}=3 R^{2} / 2
$$

$$
c=2
$$

## Gaussian+tail model

$$
\begin{aligned}
\tilde{f}_{1}^{g}\left(x, b^{2} ; \mu_{b}^{2}, \mu_{b}\right) & =f_{1}^{g}\left(x ; \mu_{b}\right) K_{0}(b / R) / \ln \left(R b_{0} / b+1\right) \\
\tilde{h}_{1}^{\perp g}\left(x, b^{2} ; \mu_{b}^{2}, \mu_{b}\right) & =\frac{c}{4} f_{1}^{g}\left(x ; \mu_{b}\right) \frac{b}{R_{h}} K_{1}\left(b / R_{h}\right) / \ln \left(R_{h} b_{0} / b+1\right)
\end{aligned}
$$



