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Quantum computer was proposed from
two fronts:

1.The need to reduce heat dissipation---
Benioff 1980
2.The need to simulate quantum systems



Quantum Computer can Solve certain important
mathematical problems

Factorization problem, Shor (1994).

Classical Computer: exponental in N
Quantum Comput: polynomialin N

P. Shor, in Proceedings of the 35th Annual Symposium on the Foundations of Computer
Science, edited by S. Goldwasser ~IEEE Computer Society, Los Alamitos, 1994!, p. 124.
Experimental demonstration:

L. M. K. Vandersypen et al., Nature, 414, 883 (2001).



Search problem Grover (1995).

Classical computer: O(N)
Quantum Comput: O(VN)

L. K. Grover, Phys. Rev. Lett. 79, 325 (1997).

Experimental demonstration:
J.A. Jones et al., Nature 393 (1998) 344.
|.L. Chuang et al., Phys. Rev. Lett. 80 (1998) 3408.

Improved Grover Algorithm

G L Long, Phys. Rev. A64 (2001) 022307
Experimental demonstration:
Spreeuw et al., Phys. Rev. Lett. 88 (2002) 137901




easy to control to simulate dynamical properties of
another that is difficult to control or unknown.

* Two kinds of quantum simulations: digital vs analog -

Analog: The hamiltonians are similar
Digital: No special requirement, just a universal quantum computer

* QS has attracted much interests in recent years:

f Quantum many-body physics \

C. Negrevergneet al., Phys. Rev. A 71, 032344 (2005).
J. Zhang, T.-C. Wei and R. Laflamme, Phys. Rev.Lett. 107, 010501 (2011).

Chemical reactions
D. W. Lu et al., Phys. Rev. Lett. 107, 020501 (2011).
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2.Digital Quantum Simulation of Tunneling

G.R. Feng, Y. Lu, L. Hao, F.H. Zhang, and G.L. Long,
Scientific Reports 3, 2232 (2013).



The digital simulation algorithm

* In Schrédinger picture, the evolution of the wave
function with time

-,

T
[ (x,t+ At)) = e~ am +V(X)IAL U (2, 1))

C. Zalka, Proc. Roy. Soc. Lond. A. 1998, 454, 313-322 1998
A. T. Sornborger, 1202.15036
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Discretizing time
* Using Trotter Formula

et(}i+§) _ etﬁetf} 4+ O(tQ)

15.2

[ (2,1 + At)) = e~ TmatVEOIA 1y (40 1))

!

P2 B,
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Discretizing coordinate degree

e Suppose v (x.t) isthe wave function, and itis
continuous on the region 0O<x<L, with a periodic
boundary condition ¢ (z + L.t) = ¢ (z,1).

* X is discretized into a lattice with spacing Al and the
wave function is stored in an n-qubit quantum register:

2™ —1
11‘—>Z (. t) k), xp = kAL Al = L
* The 2-qubit S|mulat|on:

k). |00), |01), |10) and [11) |k)=|k Al)
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Discretizing the potential operator Lf'(X)

* Because the potential operator V(X)) is a
function of the coordinate operator X , itis
diagonal in the coordinate representation.

* |[n a n-qubit discretized grid, F(f() can be
decomposed as:

4
) 1 0 .
V = E "ueg An 8}1:1 Oip. 03 = ( 0 —1 ) and o4 = I
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Discretizing the potential operator V(X)

* |n a 2-qubit system V =Vl @ 0., corresponds
to a double well potential of amplitude V

00 01 10 11
V0 —

-V I

* This double-well potential can be
implemented using only a single qubit gate
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Discretizing momentum degree

* Inthe momentum representation, the eigen state |)
of the momentum operator P, can be expressed
using the eigen states |k) of X in the coordinate
representation.

2™ —1

2T -7, . L . _
2 ez IR LY 5 =0,1,...,2" — 1.
7. k=0

B 1
_2?1

1J)

* This is obtained with the help of quantum Fourier
transformation (QFT)
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Discretizing momentum degree

* The eigen values of momentum

. {; 0<j <2
)=

%(2?1—1 _ }) 2?1—1 < } < on
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Discretizing momentum degree

* In the momentum representation, the P, operator is

diagonal
Qn—l 2,,_ on __ 1 o5
~ m . ) Al " — . . .
Py=) Syl 3 5@ = lll
j=0 j=2n—141
* For a 2-qubit simulation:
000 0
5 2r L 01 0 O
by 11002 0
000 —1



Discretizing momentum degree

* The kinetic energy operator can be obtained via

QFT
. o 0000
P2 P 72 :
2m om 4 00 40
0001

* Here we have taken m=1/2, F is the discrete
QFT operator.

1 _iPe
E—tg,mﬁ.t _ F —EE ﬂ.l‘,F
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Realization of Quantum Fourier Transform

 F' (qubits exchanged) can be implemented in
guantum circuits via

F = HyR=Hy

* H,and H, are Hadamard gates on the first and
second qubits. Rz =diag[1.1.1.4] isthe
controlled phase gate.



The Discretized Schrodinger Eq.

* The kinetic evolution operator

100 0 100 0
2a 0010 LmEa[0010
€ = £ 0100 |¢ ° 0100 |

0001 0001

= F_l(I)ﬁzlng
372 w2
Here o, = exp|—i 1 R:At], Z1 = e}:p_-ii 0. @ IAt],

372 :
Zy = exphiz I ®o.At]

* The potential evolution operator

e~ V(X)AL _ [ o —iVpo, Al

= Q



The Discretized Schrodinger Eq.

* The time-dependent Schrodinger Eq. can be
rewritten as:

3 3
Z Uzt + A k) = F 10,2, Z2FQ Z U (g, 1) k)
E—0 fe=0



Circuits for QS of Tunneling

4 F D F1
|Y,> I Hz 22 I HzT—Q—
¥ HiRe 1 _________ Sy -y _______ "m”
K | 3> —
|Y,> — F D | Q T
|¢1> -]
— Hs
— F = ™ | H:
— H: RL/ZII;
— 23 1 *
— D = 4] b, T
k— Z b, bs

D: evolution of kinetic energy in k-rep, F: QFT, Q: evolution with potential.

G.R. Feng, Y. Lu, L. Hao, F.H. Zhang, and G.L. Long, Scientific Reports 3, 2232 (2013).
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Experiment with 3-qubits ‘

000 001 010 011 100 101 110 111

1
08 000 001 010 011 100 101 110 1

' mmEEDE2 N
06 ,

(a)

04} |
& 19T

0 _——" Y 'ﬂ .:* :.- v I

— S—— Ty =
0 1 2

—
—
—A

3 4 5

I

(b)

Time step



teCh no |Ogy tECh MIT 2012 %ﬂ?%%ﬂ REGISTER NOW
review EXPLORE THE

Published by MIT

THE PREMIER CONMFERENCE FOCUSED ON EMERGING TECHNOLOGIES AND THEIR IMPACT FUTURE OF TECHNOLOGY

English | en Espafiol | auf Deutsch | in taliano | 32 | em Portugués Login | Subscribe
HOME COMPUTING COMMUMICATIONS EMERGY MATERIALS BIOMEDICINE 5 MAGAZINE BLOGS VIDEO search @

Xheo Dlvalan m

That should open the floodgates for more digital
guantum simulations in future. It's significant because
this approach has the potential to simulate much more
complex quantum phenomenon than is currently
possible

guantum computers. Such a demonstration would be the first example of a digital quantum simulation.

And today Guan Ru Feng and pals at Tsinghua University in Beijing say they've done it. To
simulate tunnelling, these guys used a quantum computer that relies on nuclear magnetic resonance to
manipulate qubits in encoded in the carbon and hydrogen atoms that make up chloroform molecules.
They say this is the first demonstration of a quantum tunnelling simulation using an NMR quantum
computer.

2014/10/20 Monday



3. Nonadiabatic Holonomic Quantum
Computation

G. R. Feng, G. F. Xu, and G. L. Long, Phys. Rev. Lett.
110, 190501 (2013).



HQC proposals

L. M. Duan et al., Science 292, 1695 (2001).
(BETBFRSD

J
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L. Faoro et al., Phys. Rev. Lett. 90, 028301 (2003).

-

[ -

lasers

A. Recati et al., Phys. Rev. A 66, 032309 (2002).
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Quantum Dot

Vitaly N. Golovach et al., Phys. Rev. A 81, 022315 (2010).

\ (BT HARG)

L.-A. Wu, P. Zanardi, and D. A. Lidar, Phys. Rev. Lett. 95, 130501 (2005).

X. D. Zhang, Phys. Rev. A 74, 034302 (2006).

AHQC & DFS
combined

]_




'ﬂ\lHQC: subspace spanned by {jp,(0))) | {loc()), , satisfying \

L L
i OGO = D 1 ONAOL (1)
k=1 k=1

(i) AEOIHDIP(1) =0, k. [=1,.... L. (2)
After cycle T, the evolution [/(7) is a holonomy matrix

[1] E. Sjoqvist et al., New Journal of Physics 14, 103035 (2012). [2] G. F. Xu et al., Phys. Rev. Lett.
109, 170501 (2012).
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Theoretical protocol

* One-qubit NHQC gates: 0y, =[10)  |1)p = [11)

* |nthe basis {/00),[01),[10),11)}

0 0 0 0
._ 0 0 ef‘(%l —e_i%
Hied =14 -4 o
0 —e3 0 0 )

= La(X1 X +Y1Y2) +b(X1Yy — Y1 Xo) —aXy(Io — Zy) — bY1(Io — Z2))

a1y = Jycos(o1/2) by = Jysin(o1/2)
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* NHQC CNOT gate

00), = [100)  |01)p = [101)  |10), = [110) [11), = [111)

 |n the basis

{|000), [001),|010), [011) |100), [101),|110),|111)}

1%

/000 0 000 0
000 0 000 0 @ o _
000 0 000 0 X
. 000 0 001 —1 Q 53
21000 0 000 0 o F &
000 0 000 0 "‘le
000 1 000 O
\000-1000 0 )
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 The evolution operators and one-qubit gates

: : : Basis:
7r | (l) i)l B 8 {10}z, 1)L} U 0 eit
- T®1 L - - — ‘ - '
Jim = G =l 0 o e — (1) =\ o
0 0 e 0
Basis:
& (1) 01 8 8 U0z, Lz CoS¢y  ising
— 2 _ - =
S =m, Uz™(2) = 0 0 cos@g  isings _ Un(d2) = ( —ising, —cosd )
0 0 —isingy — cos @

Ue(O)Uo(=6/2) = 5% U O)Uo(—¢/2) = 3%
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e Byusing Hi(¢1), Ha(é2) and H,
RE(8) = Uy (0)Ue () = DR () U5 £ ().

RE(0) = Ut (O)0-s(= ) = V()05 ¥ (7).
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Experimental output state fidelities
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Fover= 97.6% fower=97.3%  f .=97.9%  f,..,=957%
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Experimental X matrix

Ul

cnot

F=91.43 %

FX — |Tr(XEIPXIh)|/\/Tl‘()(expxlffp)ﬂ(xth}fih)
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X. Wang, C.-S. Yu, and X. X. Yi, Phys. Lett. A 373, 58 (2008).
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Room temperature high-fidelity holonomic
single-qubit gate on a solid-state spin

%iluia Arroyo-Camejo’, Andrii Lazariev?, Stefan W. Hell' & Gopalakrishnan Balasubramanian?

At its most fundamental level, circuit-based quantum computation relies on the application of
controlled phase shift operations on quantum registers. While these operations are generally
compromised by noise and imperfections, quantum gates based on geometric phase shifts
can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-
fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian)



Experimental realization of universal geometric
guantum gates with solid-state spins

C. Zu, W.-B. Wang, L. He, W.-G. Zhang, C.-Y. Dai, F. Wang & L.-M. Duan
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Nature 514, 72-75 (02 October 2014) | doi:10.1038/nature13729
Received 06 May 2014 | Accepted 31 July 2014 | Published online 01 October 2014
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Experimental realization of a universal set of quantum logic gates is the central requirement for the
implementation of a quantum computer. In an “all-geometric’ approach to guantum computation1- 2,
the quantum gates are implemented using Berry phases3 and their non-Abelian extensions,
holonomies”, from geometric transformation of quantum states in the Hilbert spaceﬁ. Apart from its
fundamental interest and rich mathematical structure, the geometric approach has some built-in
noise-resilience features’ %% 7. On the experimental side, geometric phases and holonomies have



4. Superfast Evolution in ‘PT’ Systems

Chao Zheng; Liang Hao; Gui-Lu Long, Observation of a fast evolution
in a parity-time-symmetric system,
Phil. Trans. Royal Soc. A- Math. Phys. Eng. Sci., 371, 20120053 (2013).



Minimum time: Minimal time:
B Th , h
=7 T =(2a+ n)E

Bender CM, et al. Faster than Hermitian quantum
mechanics.2008, Phys. Rev. Lett. 98, 040403
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Parity-time-symmetric whispering-gallery
microcavities

Bo Peng'’, Sahin Kaya Ozdemir'™ T, Fuchuan Lei"2, Faraz Monifi', Mariagiovanna Gianfreda3?,
Gui Lu Long?®, Shanhui Fan®, Franco Nori’8, Carl M. Bender? and Lan Yang'™

Optical systems combining balanced loss and gain provide a unique platform to implement classical analogues of quantum
systems described by non-Hermitian parity-time (PT)-symmetric Hamiltonians. Such systems can be used to create synthetic
materials with properties that cannot be attained in materials having only loss or only gain. Here we report PT-symmetry
breaking in coupled optical resonators. We observed non-reciprocity in the PT-symmetry-breaking phase due to strong field
localization, which significantly enhances nonlinearity. In the linear regime, light transmission is reciprocal regardless of
whether the symmetry is broken or unbroken. We show that in one direction there is a complete absence of resonance peaks
whereas in the other direction the transmission is resonantly enhanced, a feature directly associated with the use of resonant
structures. Our results could lead to a new generation of synthetic optical systems enabling on-chip manipulation and control

of light propagation.
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Fig.5. Experimentally observed unidirectional transmission for PI-symmetric WGM
microresonators in the nonlinear regime. When both resonators are passive (no gain), the
transmission is bi-directional (reciprocal), and light is transmitted in both forward (A(a)) and
backward directions (B(a)). In Ihe unbroken-symmetry region, where the coupling exceeds the
critical value and gain and loss are balanced, the transmission is still bi-directional (A(b) &
B(b)). Mode splitting due to coupling is now resolved because gain compensates loss leading to
narrower linewidths. In the broken-symmetry region (A(c) & B(c)), transmission becomes




Non-Hermitian PT symmetric Case:
(CM Bender )

re s
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The time needed from |0) to |1) IS

t="7 (g + 5

0, 2

If a=—mt/2, the time needed from [0) to |1) Is Zero!

C.M.Bender,D.C.Brody,H.F. Jones,B.K.Meister. Faster than
Hermitian quantum mechanics. Phys. Rev. Lett. 98, 040403
(2007)



Constructing a PT-symmtric System

10} - v 0 t H

Lt
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|. G.L.Long, Quantum computation using nonlinear quantum optics, an
abstract (51 11-53) (Tracking No. FNO3-FNO02-32) submitted to SPIE
conference "Fluctuations and Noise in Photonics and Quantum Optics® in
18 Oct 2002.

2. G L Long, General Principle of Quantum Interference and the Duality
Computer, Commun.Theor. Physics, 45, 825-844 ( 2006 ). quant-ph
/0512120.

3. Gudder S. Mathematical theory of duality quantum computers. Quantum Inf
Process, 2007, 6:37-48.

4. Long G L,Int.).Theor. Phys.50: 1305-1318(2011).
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Hamiltonian Simulation Using Linear Combinations of Unitary Operations

Andrew M. Childs®? and Nathan Wiehe?

! Department of Combinatorics & Optimization, University of Waterloo, Ontario N2L 3G1, Canada
“Institute for Quantum Computing, University of Waterloo, Ontario N2L 3G1, Canada

We present a new approach to simulating Hamiltonian dynamics based on implementing linear
combinations of unitary operations rather than products of unitary operations. The resulting algo-
rithm has superior performance to existing simulation algorithms based on product formulas and,
most notably, scales better with the simulation error than any known Hamiltonian simulation tech-
nique. Our main tool is a general method to nearly deterministically implement linear combinations
of nearby unitary operations, which we show is optimal among a large class of methods.

A E A A Quantum Information and Computation 12,901-924 (2012) .
I. INTRODUCTION

Simulating the time evolution of quantum systems is a major potential application of quantum computers. While
quantum simulation is apparently intractable using classical computers, quantum computers are naturally suited to
this task. Even before a fault-tolerant quantum computer is built, quantum simulation techniques can be used to prove
equivalence between Hamiltonian-based models of quantum computing (such as adiabatic quantum computing [!] and
continuous-time quantum walks [2]) and to develop novel quantum algorithms [—7].

Feb 2012




Theorem 1. Let the system Hamiltonian be H = E;n:l H; where each H; & C2"*2" s Hermitian and satisfies

|H;|| < h for a given constant h. Then the Hamiltonian evolution e~** can be simulated on a quantum computer
with failure probability and error at most € as a product of linear combinations of unitary operators. In the limit of
large m, ht,1/e€, this simulation uses

O (mzhtELm flog(mmfe)) (1)

elementary operations and exponentials of the H;s.

Although we have not specified the method used to simulate the exponential of each H;, there are well-known
techniques to simulate simple Hamiltonians. In particular, if H; is 1-sparse (i.e., has at most one non-zero matrix
element in each row and column), then it can be simulated using O(1) elementary operations [, U], so (1) gives an
upper bound on the complexity of simulating sparse Hamiltonians.

Our simulation is superior to the previous best known simulation algorithms based on product formulas. Previous
methods have scaling of the same form, but with the coefficient 1.6 replaced by 2.54 [11, Theorem 1] or 2.06 [20,
Theorem 1]. Also note that Theorem 1 of [12] gives a similar scaling as in [20], except the term in the exponential
depends on the second-largest |[H;|| rather than h.



Pulse sequences for the operations
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Figure 2: Typical spectra of the work qubit with o« = —n/8:
(a) pseudopure state at the beginning of evolution; (b) final
state after evolving for a time of 7.
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5. Summary



Summary

Using NMR, digital QS of tunneling is
demonstrated for the 15t time.

Nonadiabatic HQC is first demonstrated in
NMR.

Using NMR and Duality quantum computing,
superfast evolution of PT symmetric system.

QS is an important tool in studying quantum
systems. NMR is playing an important role in
the experiment.
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