Key Future Measurements of TMDs at JLab and Other Facilities

Kalyan Allada Massachusetts Institute of Technology

SPIN 2014, Peking University, Beijing, China 20th - 24th October, 2014

Parton Distribution Functions Extracted in DIS

Semi-Inclusive DIS

Detection of leading hadron provides access to TMDs:

Semi-Inclusive DIS

- Detection of leading hadron provides access to TMDs:
- Transverse Momentum Dependent PDFs
 - Links intrinsic parton motion(\mathbf{k}^q_{τ}) and parton spin(\mathbf{s}^q_{τ}), to nucleon spin (\mathbf{S}^N_{τ})
 - Provides access to quark OAM through spin-orbit correlations
 - Provides 3-D imaging of quarks in momentum space
 - Access to quark-gluon-quark correlations through higher-twist observables

Leading Twist TMDs

Eight leading twist TMDs accessible in SIDIS

Transverse Momentum Dependent Quark Distributions (TMDs)

$$d^6\sigma = \frac{4\pi\alpha^2 sx}{Q^4} \times$$

Accessible through Semi-inclusive DIS reaction

$$f_1 = \bigcirc$$

Boer-Mulders
$$\mathbf{h}_{1}^{\perp} = \mathbf{p}$$

$$\begin{split} &\{ \left[1 + (1 - y)^2 \right] \sum_{q,\overline{q}} e_q^2 f_1^q(x) D_1^q(z, P_{h\perp}^2) \\ &+ (1 - y) \frac{P_{h\perp}^2}{4z^2 M_N M_h} \frac{\cos(2\phi_h^l)}{2} \sum_{q,\overline{q}} e_q^2 h_1^{\perp (1)q}(x) H_1^{\perp q}(z, P_{h\perp}^2) \end{split}$$

Unpolarized

Worm-gear
$$\mathbf{h}_{1L}^{\perp} = \mathbf{p}_{1L}$$

Transversity
$$h_{1T} = \frac{1}{100}$$

Sivers
$$f_{1T}^{\perp} = \bigcirc$$
 -

Pretzelosity
$$\mathbf{h}_{1T}^{\perp} =$$

Worm-gear

$$h_{1T}^{\perp} = \bigcirc$$

$$-|S_{L}|(1-y)\frac{P_{h\perp}^{2}}{4z^{2}M_{N}M_{h}}\frac{\sin(2\phi_{h}^{l})\sum_{q,\overline{q}}e_{q}^{2}h_{1L}^{\perp(1)q}(x)H_{1}^{\perp q}(z,P_{h\perp}^{2})}{2}$$

+
$$|S_T|(1-y)\frac{P_{h\perp}}{zM_h}\sin(\phi_h^l+\phi_S^l)\sum_{q,\overline{q}}e_q^2h_1^q(x)H_1^{\perp q}(z,P_{h\perp}^2)$$

$$+ |S_T| (1 - y + \frac{1}{2} y^2) \frac{P_{h\perp}}{z M_N} \frac{\sin(\phi_h^l - \phi_S^l)}{\sum_{q,\overline{q}} e_q^2 f_{1T}^{\perp (1)q}(x) D_1^q(z, P_{h\perp}^2)}$$

$$+ |S_{T}| (1-y) \frac{P_{h\perp}^{3}}{6z^{3} M_{N}^{2} M_{h}} \sin(3\phi_{h}^{l} - \phi_{S}^{l}) \sum_{q,\overline{q}} e_{q}^{2} h_{1T}^{\perp(2)q}(x) H_{1}^{\perp q}(z, P_{h\perp}^{2})$$

$$\begin{split} & + \lambda_{e} \mid S_{L} \mid y(1 - \frac{1}{2}y) \sum_{q,\overline{q}} e_{q}^{2} g_{1}^{q}(x) D_{1}^{q}(z, P_{h\perp}^{2}) \\ & + \lambda_{e} \mid S_{T} \mid y(1 - \frac{1}{2}y) \frac{P_{h\perp}}{z M_{N}} \frac{\cos(\phi_{h}^{l} - \phi_{S}^{l})}{z M_{N}} \sum_{q,\overline{q}} e_{q}^{2} g_{1T}^{(1)q}(x) D_{1}^{q}(z, P_{h\perp}^{2}) \} \end{split}$$

Polarized

target

Polarized beam and target

TMDs in Polarized Drell-Yan Process

- Clean probe to study hadron structure
- Access to to TMDs (Sivers, Boer-Mulders etc.)
- Convolution of PDFs, no fragmentation function involved
- No QCD final state interactions
- T-odd TMDs (Boer-Mulders and Sivers) are predicted to change sign

In single polarized DY, with transversely polarized target nucleons, the general expression of the cross-section (LO) is:

S. Arnold et al, Phys.Rev. D79 (2009) 034005

A: azimuthal asymmetries

D: depolarization factor

S: target spin components

F: flux of incoming hadrons

 $\sigma_{_{\!\boldsymbol{U}}}\!\!:$ part of the cross-section surviving

integration over φ and $\varphi_{_{\!S}}$

 $\varphi_{\rm s}$: azimuthal angle of transverse target spin ${\rm S}_{\scriptscriptstyle \rm T}$ in the target rest frame

 φ : azimuthal angle of the lepton momenta in the Collins-Soper frame

TMDs in Polarized Drell-Yan Process

- Clean probe to study hadron structure
- Aceess to to TMDs (Sivers, Boer-Mulders etc.)
- Convolution of PDFs, no fragmentation function involved
- No QCD final state interactions
- T-odd TMDs (Boer-Mulders and Sivers) are predicted to change sign

In single polarized DY, with transversely polarized target nucleons, the general expression of the cross-section (LO) is:

S. Arnold et al, Phys.Rev. D79 (2009) 034005

 $A_{II}^{\cos 2 \varphi}$: Boer-Mulders function (B-M)

 $A_{\scriptscriptstyle T}^{\sin2\,\varphi_{\scriptscriptstyle S}}$: Sivers

 $A_{\tau}^{\sin(2\varphi+\varphi_s)}$: B-M (beam) \otimes Pretzelosity (target)

 $A_T^{\sin[2\varphi-\varphi_s]}$: B-M (beam) \otimes Transversity (target)

A: azimuthal asymmetries

D: depolarization factor

S: target spin components

F: flux of incoming hadrons

 σ_{ij} : part of the cross-section surviving

integration over φ and φ_c

 $\varphi_{\rm s}$: azimuthal angle of transverse target spin ${\rm S}_{\scriptscriptstyle \rm T}$ in the target rest frame

 φ : azimuthal angle of the lepton momenta in the Collins-Soper frame

Transversity PDF

$$h_{1T} =$$

Correlation between quark transverse spin (\vec{s}_{\perp}^{q}) With nucleon transverse spin (\vec{s}_{\perp}^{N})

$$\sigma_{UT}^{SIDIS} \propto \sin(\phi_h + \phi_S) \; h_1 \otimes H_1^{\perp}$$

- Probes the relativistic nature of quark dynamics
- No contribution from the gluons
- Positivity bound $2 | h_1 | \le q + \Delta q$ Soffer, PRL 74 (1995)
- First moments: tensor charge:

$$\delta q \equiv \int dx \, \left[h_1^q(x) - h_1^{\overline{q}}(x) \right]$$

- Chiral-odd: decouples from inclusive DIS
- Accessible in
 - SIDIS (measurements done at HERMES, COMPASS, JLab)
 - Di-hadron production in SIDIS (measurements done at HERMES, COMPASS)
 - Polarized Drell-Yan $p^{\uparrow} + \bar{p}^{\uparrow} \longrightarrow l^{+} + l^{-} + X$ (cleanest process, not yet done)

Extraction of Transversity from SIDIS and Belle Data

Extraction of Transversity and Collins FF

Anselmino *et al.* PRD 87, 094019 (2013)

Extraction of Nucleon Tensor Charge

$$\delta q = \int_{0}^{1} \left[h_{1}^{q}(x) - h_{1}^{\overline{q}}(x) \right] dx$$

1 : Extractions from global fits using two different Collins FF parameterizations

2-10: Predictions from various models, Lattice QCD

Large uncertainty in extracted results Need precision data!

•
$$\delta u = 0.39^{+0.18}_{-0.12}$$
 • $\delta d = -0.25^{+0.30}_{-0.10}$

$$\delta d = -0.25^{+0.30}_{-0.10}$$

$$\delta u = 0.31^{+0.16}_{-0.12}$$

$$\Delta \delta d = -0.27^{+0.10}_{-0.10}$$

Anselmino et al. PRD 87, 094019 (2013)

Extraction of Nucleon Tensor Charge

$$\delta q = \int_{0}^{1} \left[h_{1}^{q}(x) - h_{1}^{\overline{q}}(x) \right] dx$$

1 : Extractions from global fits using two different Collins FF parameterizations

2-10: Predictions from various models, Lattice QCD

Large uncertainty in extracted results Need precision data!

Some remaining issues:

- Transvesity extraction using
 - di-hadron production in SIDIS: first extraction using COMPASS/HERMES data (arXiv:1409.6607)
 - doubly polarized DY process (not yet done)
- How big is the sea quark transversity?
- Recent progress on lattice possibility to calculate x-dependence of PDF ? (X. Ji, PRL 110, 2013)

•
$$\delta u = 0.39^{+0.18}_{-0.12}$$
 • $\delta d = -0.25^{+0.30}_{-0.10}$
• $\delta u = 0.31^{+0.16}_{-0.12}$ • $\delta d = -0.27^{+0.10}_{-0.10}$

Anselmino *et al.* PRD 87, 094019 (2013)

Sivers Effect

(plot courtesy, A. Prokudin)

S. Brodsky et al., Phys. Lett. B530, 99 (2002)

Correlation between transverse momentum (\vec{k}_{\perp}^q) of quark and transverse spin of the nucleon (\vec{S}_{\perp}^N)

- Requires non-zero quark OAM
- Final-state interactions => left-right asymmetry of hadrons
- Measured in SIDIS (HEMES, COMPASS, JLab Hall-A)
 - Limited precision, kinematics
- Accessible in Drell-Yan process (not yet done)
 - Naive time-reversal odd
 - QCD predicted sign change from SIDIS to DY (based on time-reversal argument involving FSI)

$$f_{1T}^{q}(x,p_T)_{SIDIS} = -f_{1T}^{q}(x,p_T)_{DY}$$

Transverse SSA in SIDIS: Sivers Moments

$$e + p^{\uparrow} \longrightarrow e' + h + X$$

$$\sigma_{UT}^{SIDIS} \propto \sin(\phi_h - \phi_S) f_{1T}^{\perp} \otimes D_1$$

Anselmino *et al.* PRD 86, 014028 (2012)

Sivers Function

Initial model-dependent extraction of Sivers DF

 Using global fit to HERMES and COMPASS data (Anselmino et al.)

Attempt to constrain quark OAM using GPD *E* and Sivers DF

Bacchetta et. al, Phys. Rev. Lett. 107, 212001 (2011)

Lattice calculations of Sivers function

Musch, Haegler, Engelhardt, Negle & Schaeffer, PRD 85 (2012) 094510

Inclusive Hadron SSA in Hall A

$$e + n^{\uparrow} \longrightarrow \pi + X$$

Using polarized ³He target

$$A_{UT}^{\sin\left(\varphi_{S}\right)}\left(\varphi_{S}=90^{0}\right)$$

In the center-of-mass frame, viewed along the nucleon momentum direction

 π^+ favors the right side of spin vector,

 π^- favors the left side of spin vector.

Surprisingly similar behavior to fermilab E704 results from pp->hX

K. Allada *et al*, Phys. Rev. C 89, 042201(R), 2014

For a complete set of Hall-A transversity experiment results see Y. Zhao's talk parallel-V: S3

Sivers Function in Polarized Drell-Yan

DY @ COMPASS
$$\pi^- + p^{\uparrow} \longrightarrow \mu^+ + \mu^- + X$$

- 190 GeV/c $\,\pi^{-}$ beam on a transversely polarized proton target (NH $_{_{3}}$)
- Covers valence quark region
- Magnitude and sign of Sivers and Boer-Mulders asymmetry
- Expected to run in 2014-2015

See talk by B. Parsamyan (Parallel VIII: S11)

Sivers Function in Polarized Drell-Yan

DY @ Fermilab (P-1027)
$$p^{\uparrow} + p \longrightarrow \mu^{+} + \mu^{-} + X$$

- 120 GeV/c transversely polarized proton beam on unpolarized proton target
- Covers valence quark region
- Magnitude of Sivers and Boer-Mulders asymmetry
- Beyond 2018

See W. Lorenzon's talk in parallel-VIII: S11

Sivers Function in Polarized Drell-Yan

DY @ Fermilab (P-1039) $p + p^{\uparrow} \longrightarrow \mu^{+} + \mu^{-} + X$

A. Klein, X. Jiang, et. al

- 120 GeV/c proton beam on a transversely polarized proton target (NH3)
- Sea quark Sivers asymmetry both sign and magnitude
- Beyond 2016

See talk by M. Liu in parallel V-II: S10

A_N from Prompt Photon Production at PHENIX

Prompt photon A_N will measure Sivers effect Check sign change between SIDIS and pp reaction

Plans to use PHENIX MPC-Ex detector to measure the prompt photon A_N

(plot courtesy – Xiaodong Jiang)

Kang, Qiu, Vogelsang and Yua, PRD 83 094001 (2011) Gamberg and Kang, arXiv 1208.1962 (2012)

See X. Jiang's talk in Parallel-II: S5

Jefferson Lab 12 GeV

Polarized electron beam
Max energy = 6 GeV (12 GeV soon!)
Operations start in Oct 2014!

Multi-Hall SIDIS Program

Hall A Super BigBite

(SIDIS with ³He: $\pi^{+/-}$, K^{+/-})

Hall A SoLID

(SIDIS with polarized 3 He/NH₃: $\pi^{+/-}$) (precision 4D mapping)

Leading Twist TMDs Quark polarization Un-Polarized (U) Longitudinally Polarized (L) $h_1^{\perp} = 0$ $g_1 = 0$ Helicity $h_{11}^{\perp} = 0$ Transversely Polarized $h_{11}^{\perp} = 0$

Hall B/CLAS12

(SIDIS with polarized H/D: $\pi^{+/-}$, K^{+/-}) Comprehensive SIDIS program

Hall C/SHMS

(SIDIS with unpolarized H/D) : L-T studies, precise π^+/π^- ratios, $p_{_T}$ dependence studies

SIDIS with Super BigBite in Hall A

- BigBite as electron arm: DIS electrons at ~30 deg., 1
- SBS as hadron arm @ 14 deg.
- High-luminosity (10³⁶ cm⁻²s⁻¹) polarized ³He target (with spin-flip)
- HERMES RICH detector as PID
- High-impact TMD physics
 - Collins/Sivers/pretzelosity
 - 100X higher statistical FOM than HERMES, high-x data.
- Will run after 2016

Sivers Asymmetry

Courtesy, A. Puckett

SoLID Spectrometer in Hall A

- Large acceptance, full azimuthal coverage
- High luminosity (10³⁶-10³⁹ cm⁻²s⁻¹)
- Longitudinal and transverse polarized targets
 - proton (NH₃) and neutron (³He) targets
- Three SIDIS proposals approved
 - Longitudinal pol. ³He target (E12-11-007)
 - Transverse pol. ³He target (E12-10-006)
 - Transversely pol. NH₃ target (E12-11-108)
- Precision 4-D (x,Q²,p_T,z) mapping of TMDs (Collins, Sivers, Pretzelosity etc.)

Planned physics with SoLID include parity violation DIS, SIDIS, di-hadron, J/ ψ production, etc. (See talk by J.P.Chen in parallel-VII: S11)

SoLID Phase Space Coverage

•
$$X_B = 0.05 - 0.68$$

•
$$Q^2 = 1.0 - 8.0 (\text{GeV/c})^2$$

•
$$P_{\tau} = 0 - 1.8 \text{ GeV/c}$$

•
$$z = 0.3 - 0.7$$

• W > 2.3 GeV

SoLID Projections: Collins Asymmetry

Collins Asymmetry

- Covers large-x region
- Essential for transversity distribution, tensor charge extraction
- SoLID proton/neutron data will allow extraction of tensor charge

$$\delta q = \int_{0}^{1} \left[h_1^q(x) - h_1^q(x) \right] dx$$

Courtesy, A. Prokudin

1 - 12 GeV SoLID (projection)

Extractions from experiments:

- 2,3 Anselmino et al, Phys.Rev. D87 (201
- 4 Anselmino et al, Nucl. Phys. Proc. Sup
- 5 Bacchetta, Courtoy, Radici, JHEP 130

Lattice QCD:

- 6 Alexandrou et al, PoS(LATTICE 2014)
- 7 Gockeler et al, Phys. Lett. B (2005)

DSE:

- 8 Pitschmann et al, (2014)
- 9 Hecht, Roberts and Schmidt, Phys. Re

Models:

- 10 Cloet, Bentz and Thomas, Phys. Lett.
- 11 Wakamatsu, Phys. Lett. B (2007)
- 12 Pasquini et al, Phys. Rev. D (2007)
- 13 Gamberg and Goldstein, Phys. Rev.
- 14 He and Ji, Phys. Rev. D (1995)

A total of more than 1000 bins

Only statistical uncertainties included in the fit Systematic (model) uncertainties not included

SoLID Projections: Sivers Asymmetry

• Covers valence quark region

- Relatively large p_{_} range
 - Important for testing TMD approach
- Relatively large Q² range (evolution studies)
- Access higher-twist terms by direct fitting of SSA

Sivers Asymmetry (π^+)

- Current experimental uncertainties
- Projected uncertainties with SoLID

Only statistical uncertainties included in the fit Systematic (model) uncertainties not included: Assumption in extraction:

 k_{τ} dependence, Q^2 evolution, TMD FF are known

Sivers Moment Projections in Multi-dimensions

Impact of SoLID Data on the Extraction of TMDs

High precision SoLID data will allow Multi-dimensional mapping of SSA

CLAS 12 TMD Program

CLAS12 detector

- •Luminosity up to 10³⁵ cm⁻²s⁻¹
- •High polarized electron beams (~85%)
- •H and D polarized target
- Broad kinematic range

Leading Twist TMDs

			Quark polarization				
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)			
Nucleon Polarization	U	f ₁ = •		h₁¹ = ↑ − ↓ Boer-Mulder	◢	2-06-112: Pion SIDI 2-09-008: Kaon SID	
	L		g ₁ = Helicity	h ₁₁ =		.2-07-107: Pion SID .2-09-009: Kaon SID	
	т	$f_{11}^{\perp} = \bigcirc$ - \bigcirc Sivers	g ₁₁ ± − →	$h_{1T} = $ Transversity $h_{1T}^{\perp} = $ $ -$	'	R12-11-111: Pion/Ka R12-12-009: Pion/Ka	

CLAS 12 Projections: Collins and Sivers

100 days @ L = $5x10^{33}$ cm⁻²s⁻¹, HD-Ice target (60% H pol, f = 1/3), RICH dectector

SIDIS with Super HMS in Hall-C

High Momentum Spectrometer (HMS)

 $d\Omega \sim 6$ msr, P_0 = 0.5 – 7 GeV/c θ_0 =10.5 to 80 degrees

Super-HMS:

 $d\Omega \sim 5$ msr, P₀= 1 – 11 GeV/c θ_0 =5.5 to 40 degrees

- Main program: Precise measurements of absolute SIDIS cross-sections
- Approved SIDIS proposals:
 - E12-09-002: π^+/π^- ratios on H/D targets
 - E12-06-104: $R_{SIDIS} = \sigma_{I}/\sigma_{T}$ on H/D targets
 - E12-09-017: p_{τ} dependence studies in SIDIS
 - E12-13-007: π^0 production

Future Electron Ion Collider Kinematics

EIC white paper, arXiv:1212.1701

Projections for an EIC

Three Options:

$$\sqrt{s}$$
 = 140 GeV (20 x 250)
= 50 GeV (11 x 60)
= 15 GeV (3 x 20)

Integrated luminosity in each case: 30 fb⁻¹ (about 1 month running with 10³⁴/cm²/s)

- 0.8 > y > 0.05
- Polarization: 70%
- Overall efficiency : 50%
- z = 12 bins (0.2 0.8)
- $P_{\tau} = 5 \text{ bins } (0 1 \text{ GeV})$

How important are sea quarks TMDs?

What about gluon TMDs?

– Eg: J/psi production ($\gamma g \rightarrow c\bar{c}$)

$$e + p^{\uparrow} \rightarrow e + J/\psi + X$$

Godbole, et al. PRD **85**, 094013 (2012) Projection of π^+ SSA on proton

1 out of 60 bins of (P_{τ},z)

(plot by M. Huang, Duke Univ.)

Summary

- Study of TMDs through SIDIS at JLab
 - Moving from exploration to precision measurements
 - Study spin-orbit corrections, P_⊤ dependence, factorization, flavor dependence, higher twist terms etc.
- In near future, Drell-Yan experiments will perform crucial measurements
 - Measure magnitude and sign of T-odd Sivers and Boer-Mulders functions
 - Explore sea quark TMDs
 - COMPASS, Fermilab, RHIC, NICA, FAIR (PAX) etc.
- JLab 12 GeV experiments will provide high precision SIDIS data allowing for:
 - Multi-dimensional study of TMDs valence region (Hall A/B)
 - Tensor charge extraction (Hall A/B)
 - Strange quark distributions from kaon measurements (Hall A/B)
 - Study of quark-gluon correlation from higher-twist terms (Hall A/B)
 - High precision SIDIS cross-sections (Hall C)
- A future EIC will explore sea quark and gluon TMDs a bright future for TMDs!

Spare Slides

SoLID Projections: Pretzelosity Asymmetry

$$A_{UT}^{\sin(3\phi-\phi_S)} \sim \frac{h_{1T}^{\perp} \otimes H_1}{f_1 \otimes D_1}$$

• Pretzelosity: $\Delta L=2$ (L=0 and L=2 interference, L=1 and -1 interference)

Boffi, Efremov, BP, Schweitzer, PRD 79 (2009)

SoLID Projections of A_{LT} and A_{UL}

• Clean extraction of g_{1T} and h_{1T} possible

Projections for ³He target

Hall-C SIDIS cross-section

$$\frac{dN}{dz} \sim \sum_{q} e_q^2 q(x, Q^2) D_{q \to \pi}(z, Q^2)$$

T. Navasardyan et al. PRL 98, 022001 (2007)

$$X \sim 0.3, Q^2 \sim 2.3 \text{ (GeV/c)}^2$$

$$4.0 \quad 3.5 \quad 3.0 \quad 2.5 \quad 2.0 \quad 1.5$$

$$0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9$$

$$0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9$$

$$z = E_h/v$$