Overview of Polarized 3He Gas Targets

Jian-ping Chen(陈剑平), Jefferson Lab
Spin2014, Beijing, China, October 24, 2014

- Introduction to spin and polarized 3He
- Polarized 3He gas targets for high-energy nuclear physics
- Polarized 3He for other applications
- Summary

Acknowledgement: some slides provided by my collaborators
some “borrowed” from colleague’s talks on the web
Introduction to Polarized 3He

Spin-Exchange Optical Pumping
Metastability-Exchange Optical Pumping
Asymmetry for Nucleon Spin Measurements

- Double spin symmetries for polarized beam on polarized targets

\[A = \frac{1}{P_b P_t f} \frac{N^{\uparrow\uparrow} - N^{\downarrow\uparrow}}{N^{\uparrow\uparrow} + N^{\downarrow\downarrow}} \]

- Figure of Merit (FOM) depends on luminosity, beam and target polarization (squared), dilution factor (squared)

\[FOM = P_b^2 \times P_t^2 \times f^2 \times L \]

\[L = I \times \rho \left[\text{cm}^2 \text{ s}^{-1} \right] \]
Polarized Luminosity and Polarization

- Luminosity
 Internal targets (storage ring) 10^{31}
 Polarized external (fixed) targets
 Solid (p/d) 10^{35}
 Gas (3He) 10^{36} (JLab)

World highest luminosity/FOM

- Polarization (in high intensity beam)
 $P_{^3$He} > 70\%$ ($\sim 60\%$) (JLab)
 $P_H > 90\%$ (70\%)
 $P_D > 70\%$ (40\%)
Polarized 3He

- Polarized atomic electrons, then spin exchange with 3He nuclei
- Issue: ground state, two electrons (full shell), opposite spin, cannot be polarized (exclusion principle)

- Solutions:
 1) Alkali (Rb) Optical Pumping Spin Exchange
 2) Meta-stability Exchange Optical Pumping
Spin exchange Optical Pumping for ^3He

Optical Pumping on Rb atom

Spin exchange

Collisional Mixing

5P$_{1/2}$

795 nm

σ^+

1/2

Zeeman Splitting

5S$_{1/2}$

$M = -1/2$

$M = +1/2$

^3He

Rb
Meta-stability Exchange Optical Pumping

\[2^3P_0 \]

CP Laser 1083 nm

\[2^3S_1 \] \{ \\
\[1/2\] \[3/2\]

RF Excitation (~1 ppm)

\[1^1S_0 \]

\[F=1/2 \]

\[m_F = -3/2 \]

\[-1/2 \] \[1/2 \] \[3/2 \]

\[\sigma^+ \]

Equal Probability Decay

Net Polarization

Metastability Exchange
History/Progress in Polarized 3He

- **Spin-Exchange Optical Pumping**

 1960: Bouchiat/Carver/Varnum (Princeton), PRL 5, 373 (1960)

 2.8 atm 3He, optically pumped 0.001 mm partial pressure of Rb, $P = 0.01\%$

 we have observed enhancement of the nuclear polarization by a factor of 10^4 above the initial Boltzmann distribution of 10^{-8}.

 Now: 10 atm 3He, Rb-K optical pumping, $P > 70\%$ (JLab/UVa/W&M...)

- **Meta-stability Exchange Optical Pumping**

 1963: Colegrove/Scheerer/Walters (Texas Instruments), PR, 132, 2561 (1963)

 ~ 0.001 atm 3He, achieved $\sim 40\%$ polarization

 The highest polarization measured by nuclear magnetic resonance was $40 \pm 5\%$ in a 5 cm-diam Pyrex sphere with the 3He gas pressure at 1 mm Hg.

 Now: ~ 1 atm 3He, mass production with MEOP, $P > 70\%$ (Mainz)
Polarized 3He Target @ JLab: 1998-now

Spin-Exchange Optical Pumping

https://hallaweb.jlab.org/wiki/index.php/Hall_A_He3_Polarized_Target
http://hallaweb.jlab.org/equipment/targets/polhe3/polhe3_tgt.html

JLab (J. P. Chen), UVa (G. Cates), W&M (T. Averett), Duke (H. Gao), Temple (Z.E. Meziani), Kentucky (W. Korsch), Caltech (E. Hughes)…
JLab Polarized 3He Target

- $P = 40\text{--}45\%$
 - $@\ I = 15\ \mu A$

- Longitudinal, transverse and vertical
- Luminosity =$10^{36} \ \text{(1/s)}$
 - (highest in the world)
 - Upgrade on the way to 10^{37}
- High in-beam polarization
 - $\sim 60\%$ ($>70\%$ no beam)
- Effective polarized neutron target
- 13 completed experiments
 - 8 approved with 12 GeV (A/C)
Figure-of-Merit History for High Lumiosity Polarized \(^3\)He

Figure of Merit \(\equiv (\text{Target Polarization})^2 \times \text{Beam Current}\)

- **SLAC**
 - E142: 35% @ few µA
 - E154: 35% @ few µA

- **Jefferson Lab**
 - E94-010: 35% @ 10 µA
 - E99-117: 40% @ 12 µA
 - E97-110: 40% @ 12 µA
 - E02-013: 50% @ 8 µA
 - E06-010: 60% @ 15 µA

Year:
- 1990
- 1992
- 1994
- 1996
- 1998
- 2000
- 2002
- 2004
- 2006
- 2008
- 2010
Rb-K Hybrid Optical Pumping for 3He
Narrow-width Lasers

With new narrow-width lasers, polarizations > 70%

Left: Blue is current lasers, Red is Comet laser
Right: Absorption spectrum of Rb
Polarimetry

- Two methods: **NMR and EPR**, precision 2-3%
- NMR (nuclear magnetic resonance)
 - RF field
 - AFP (adiabatic fast passage) sweep through resonance when target spin flips, induced signal through pickup coils
 - Needs calibration from a known (water calibration)
- EPR (electron-paramagnetic resonance)
 - Rb energy level splitting (D2 light) corresponding to main field +/- a small field due to 3He polarization
 - Using AFP to flip 3He spin. Frequency difference of lights emitted proportional to 3He polarization
 - No calibration needed
- Cross checking with elastic asymmetry measurements
Ongoing Upgrade for Future Experiments

- 8 approved new experiments at JLab
- Aiming for luminosity $L \sim 10^{37} \text{ cm}^{-2}\text{s}^{-1}$
 - Single transfer tube \rightarrow two transfer tubes allowing convection-driven gas flow
 - Metal target chamber to withstand high beam current
- Pulsed NMR Polarimetry
Other US Polarized 3He Facilities

UVa, W&M, Duke, New Hampshire, NIST, Wisconsin, Michigan, …
Polarized 3He at UVa (Gordon Cates)/ W&M (Todd Averett)

- Collaborating on JLab polarized 3He program
- Produce target cells for JLab experiments
- R&D on upgrade for polarized 3He for JLab experiments

- **UVa Center for In-vivo Hyperpolarized Gas MR Imaging (2000)**
- Both 3He and 129Xe

- 3He Spin density MRI

 Courtesy of T. Altes et al., University of Virginia

 Inhaled Bronchodilator
 Asymptomatic Asthmatic
Polarized 3He at Duke (Haiyan Gao)

- Collaborating on JLab polarized 3He program
- 3He spin structure with High Intensity γ Source (HIGS)
- Neutron Electric Dipole Moment (EDM)
- Search for Spin-Dependent Short-Range Force (collaboration with Fudan U.)
- Establishing collaboration on polarized 3He R&D for at Tsinghua

Medium Energy Physics Group

Triangle Universities Nuclear Laboratory
New Hampshire Center for Xenon Imaging
(W. Hersman)

- Functional Lung Imaging
- Low-field and ultra-low-field imaging
- Functional dissolved-state imaging
- Biomedical imaging simulations
- Also R&D on polarize 3He

(Xemed LLC)
Polarized 3He @ NIST and Wisconsin

- NIST, SEOP polarized 3He as Neutron Spin Filter for material science experiments with neutron scattering
- Wisconsin: R&D on SEOP polarized 3He to improve performance
- Search for Axion-like Particles using dual-species NMR 129Xe and 131Xe
- Optically pumped alkali magnetometers for biomedical applications
Polarized 3He at Michigan (T. Chupp)

- R&D on SEOP polarized 3He
- Nuclear physics (neutron spin structure)
- Fundamental Physics with Neutron
- Atomic EDM

Polarized 3He Beam Source R&D for EIC @ MIT (R. Milner)

- Based on MEOP
- Doubly ionization 3He++ for injection
- Goal: $\approx 70\%$ @ 30G 1 torr
- Transfer $\sim 10^{-14}$ 3He/s to EBIS @ 5T & 10^{-7} torr
- Deliver 1.5×10^{11} 3He++ per 20 μs pulse

J. Maxwell’s talk

[Diagram of RHIC’s Electron Beam Ion Source]
Polarized 3He Facility in Europe Mainz (W. Heil et al.), ...
Current 3He Polarizing Facility in Mainz

- $P=75-78\%$ @ 1 bar-liter/Hour for fundamental science
- $P\sim 65\%$ @ 2-3 bar-liter/Hour for medical application
- "Polarized Helium Lung Imaging Network"
- “Magnetic Resonance Imaging for Diagnosis and Monitoring of COPD and Asthma”
Applications of Polarized 3He @ Mainz

- **Fundamental applications**
 - Symmetry test He3/Xe-129
 - Search for new short-rang force (axion-like)
 - Search for Electric Dipole Moment of Xe-129
 - Accurate measurements of high magnetic field
 - Medium energy physics: neutron form factor, GDH sum rule

- **Fundamental physics with cold and ultracold neutrons**
 - angular correlation of beta-particle and neutrino in beta-decay
 - Neutron lifetime

- **Medical Applications**
 - MRI of the lung with 3He and 129Xe

F. Allmendinger’s talk

K. Tullney’s talk
Polarized 3He Facilities in Asai

Japan, Korea, China (Lanzhou, Tsinghua, …)
Polarized 3He in Japan: Neutron Spin Filter

- Japan: SEOP polarized 3He as Neutron Spin Filter
- Developed for the pulsed neutron beam at J-PARC BL10 beamline

Figure 3. (a) Wavelength dependence of the transmitted neutron beam intensity for the NSF with polarized and depolarised 3He gas. (b) Calculated neutron polarization. (c) Pumping time dependence of the 3He gas polarization measured during in-situ SEOP.
Polarized 3He @ Lanzhou Univ.

B. Hu, Y. Zhang, et al.

- clean room
- **gas filling system**
- SEOP
- Obtained 1st polarization
- NMR (3He and water)
- EPR (commissioning)
Summary

- Spin and polarization: amazing phenomenon with broad applications
- Introduction to polarized ^3He: SEOP and MEOP, tremendous progress
- Polarized ^3He: critical for neutron spin structure study, wide range of fundamental physics, medical imaging and other applications
- JLab: SEOP, neutron and ^3He spin physics
 - Highest polarized luminosity and highest FOM
 - Future: improve luminosity by one order of magnitude
- Polarized ^3He groups in USA, Europe and Asia
- Pioneering work just started in China (Lanzhou/Hefei, Tsinghua, …)
- Useful tool for spin physics and great potential for applications