Overview of Polarized ³He Gas Targets

Jian-ping Chen(陈剑平), Jefferson Lab Spin2014, Beijing, China, October 24, 2014

- Introduction to spin and polarized ³He
- Polarized ³He gas targets for high-energy nuclear physics
- Polarized ³He for other applications
- Summary

Acknowledgement: some slides provided by my collaborators some "borrowed" from colleague's talks on the web

Introduction to Polarized ³He

Spin-Exchange Optical Pumping Metastability-Exchange Optical Pumping

Asymmetry for Nucleon Spin Measurements

• Double spin symmetries for polarized beam on polarized targets

$$A = \frac{1}{P_b P_t f} \frac{N^{\uparrow\uparrow} - N^{\downarrow\uparrow}}{N^{\uparrow\uparrow} + N^{\downarrow\downarrow}}$$

• Figure of Merit (*FOM*) depends on luminosity, beam and target polarization (squared), dilution factor (squared)

$$FOM = P_b^2 * P_t^2 * f^2 * L$$

$$L = \mathbf{I}^* \rho [\operatorname{cm}^2 \operatorname{s}^{-1}]$$

Polarized Luminosity and Polarization

 Luminosity
 Internal targets (storage ring) 10³¹
 Polarized external (fixed) targets Solid (p/d) 10³⁵
 Gas (³He) 10³⁶ (JLab)

World highest luminosity/FOM

• Polarization (in-high intensity beam)

 P_{3He} > 70%(~60%)(JLab) P_{H} > 90%(70%) P_{D} > 70%(40%)

Polarized ³He

- Polarized atomic electrons, then spin exchange with ³He nuclei Issue: ground state, two electrons (full shell), opposite spin, can not be polarized (exclusion principle)
- Solutions:
 - 1) Alkali (Rb) Optical Pumping Spin Exchange
 - 2) Meta-stability Exchange Optical Pumping

Spin exchange Optical Pumping for ³He

Optical Pumping on Rb atom

Spin exchange

Meta-stability Exchange Optical Pumping

History/Progress in Polarized ³He

Spin-Exchange Optical Pumping
 1960: Bouchiat/Carver/Varnum (Princeton), PRL 5, 373 (1960)
 2.8 atm ³He, optically pumped 0.001 mm partial pressure of Rb, P=0.01% we have observed enhance ment of the nuclear polarization by a factor of 10⁴ above the initial Boltzmann distribution of 10⁻⁸.

Now: 10 atm ³He, Rb-K optical pumping, P > 70% (JLab/UVa/W&M...)

Meta-stability Exchange Optical Pumping
 1963: Colegrove/Schearer/Walters (Texas Instruments), PR, 132, 2561 (1963)
 ~0.001 atm ³He, achieved ~40% polarization

The highest polarization measured by nuclear magnetic resonance was $40\pm5\%$ in a 5 cm-diam Pyrex sphere with the He³ gas pressure at 1 mm Hg.

Now: ~1 atm ³He, mass production with MEOP, P > 70% (Mainz)

Polarized ³He Target @ JLab: 1998-now

Spin-Exchange Optical Pumping

https://hallaweb.jlab.org/wiki/index.php/Hall_A_He3_Polarized_Target http://hallaweb.jlab.org/equipment/targets/polhe3/polhe3_tgt.html

JLab (J. P. Chen), UVa (G. Cates), W&M (T. Averett), Duke (H. Gao), Temple (Z.E. Meziani), Kentucky (W. Korsch), Caltech(E. Hughes)...

JLab Polarized ³He Target

✓ longitudinal,
 transverse and vertical

- ✓ Luminosity=10³⁶ (1/s) (highest in the world)
 upgrade on the way to 10³⁷
- ✓ High in-beam polarization
 ~ 60% (>70% no beam)
- ✓ Effective polarized neutron target

✓ 13 completed experiments
 8 approved with 12 GeV (A/C)

Figure-of-Merit History for High Lumiosity Polarized ³He

Rb-K Hybrid Optical Pumping for ³He

Narrow-width Lasers

With new narrow-width lasers, polarizations > 70%

Left: Blue is current lasers, Red is Comet laser Right: Absorption spectrum of Rb

Polarimetry

- Two methods: NMR and EPR, precision 2-3%
- NMR (nuclear magnetic resonance)
 - RF field
 - AFP (adiabatic fast passage) sweep through resonance when target spin flips, induced signal through pickup coils
 - Needs calibration from a known (water calibration)
- EPR (electron-paramagnetic resonance)
 - Rb energy level splitting (D2 light) corresponding to main field +/- a small field due to ³He polarization
 - Using AFP to flip ³He spin. Frequency difference of lights emitted proportional to ³He polarization
 - No calibration needed
- Cross checking with elastic asymmetry measurements

EPR and Water NMR

Ongoing Upgrade for Future Experiments

- 8 approved new experiments at JLab
- Aiming for luminosity L ~ 10³⁷ cm⁻²s⁻¹
 - Single transfer tube → two transfer tubes allowing convection-driven gas flow
 - Metal target chamber to withstand high beam current
- Pulsed NMR Polarimetry

Other US Polarized ³He Facilities

UVa, W&M, Duke, New Hampshire, NIST, Wisconsin, Michigan, ...

Polarized ³He at UVa (Gordon Cates)/ W&M (Todd Averett)

- Collaborating on JLab polarized ³He program
- Produce target cells for JLab experiments
- R&D on upgrade for polarized ³He for JLab experiments

G. Cates' talk

- UVa Center for In-vivo Hyperpolarized Gas MR Imaging (2000)
- Both ³He and ¹²⁹Xe
- ³He Spin density MRI

Courtesy of T. Altes et al., University of Virginia

Inhaled Bronchodilator Asymptomatic Asthmatic

Polarized ³He at Duke (Haiyan Gao)

- Collaborating on JLab polarized ³He program
- ³He spin structure with High Intensity γ Source (HI γ S)
- Neutron Electric Dipole Moment (EDM)
- Search for Spin-Dependent Short-Range Force (collaboration with Fudan U.)
 C. Fu's talk
- Establishing collaboration on polarized ³He R&D for at Tsinghua <u>Medium Energy Physics Group</u> <u>Triangle Universities Nuclear Laboratory</u>

New Hampshire Center for Xenon Imaging (W. Hersman)

- Functional Lung Imaging
- Low-field and ultra-low-field imaging
- Functional dissolved-state imaging
- Biomedical imaging simulations
- Also R&D on polarize 3He

(Xemed LLC)

Polarized ³He @ NIST and Wisconsin

 NIST, SEOP polarized ³He as Neutron Spin Filter for material science experiments with neutron scattering

Diagram of Polarized ³He as Neutron Spin Filter

T. Gentile

- Wisconsin: R&D on SEOP polarized ³He to improve performance
 T. Walker
- Search for Axion-like Particles using dual-species NMR ¹²⁹Xe and ¹³¹Xe
- Optically pumped alkali magnetometers for biomedical applications

Polarized ³He at Michigan (T. Chupp)

- R&D on SEOP polarized ³He
- Nuclear physics (neutron spin structure)
- Fundamental Physics with Neutron
- Atomic EDM

Polarized ³He Beam Source R&D for EIC @ MIT (R. Milner)

- Based on MEOP
- Doubly ionization ³He++ for injection
- Goal: ~70% @ 30G 1 torr
- Transfer ~ 10⁻¹⁴ ³He/s to EBIS @ 5T & 10⁻⁷ torr
- Deliver 1.5X10^{11 3}He++ per 20 μs pulse

Superconducting Solenoid (6 T) Drift Tube Structure (10 A) (10 A)

RHIC's Electron Beam Ion Source

J. Maxwell's talk

Polarized ³He Facility in Europe Mainz (W. Heil et al.), ...

Meta-Stability Exchange Optical Pumping

Current ³He Polarizing Facility in Mainz

- P=75-78% @ 1 bar-liter/Hour for fundamental science
- P~ 65% @ 2-3 bar-liter/Hour for medical application
- "Polarized Helium Lung Imaging Network"
- "Magnetic Resonance Imaging for Diagnosis and Monitoring of COPD and Asthma"

Applications of Polarized ³He @ Mainz

- Fundamental applications
 - Symmetry test He3/Xe-129
 - Search for new short-rang force (axion-like)
 - Search for Electric Dipole Moment of Xe-129
 - Accurate measurements of high magnetic field
 - Medium energy physics: neutron form factor, GDH sum rule
- Fundamental physics with cold and ultracold neutrons
 - angular correlation of beta-particle and neutrino in beta-decay
 - Neutron lifetime
- Medical Applications
 - MRI of the lung with ³He and ¹²⁹Xe

F. Allmendinger's talk

K. Tullney's talk

Polarized ³He Facilities in Asai

Japan, Korea, China (Lanzhou, Tsinghua, ...)

Polarized ³He in Japan: Neutron Spin Filter

H. Kira et al.

- Japan: SEOP polarized 3He as Neutron Spin Filter
- Developed for the pulsed neutron beam at J-PARC BL10 beamline

Figure 3. (a) Wavelength dependence of the transmitted neutron beam intensity for the NSF with polarized and depolarised ³He gas. (b) Calculated neutron polarization. (c) Pumping time dependence of the ³He gas polarization measured during in-situ SEOP.

Polarized ³He @ Lanzhou Univ.

B. Hu, Y. Zhang, et al.

- clean room
- gas filling system
- SEOP
- Obtained 1st polarization
- NMR (3He and water)
- EPR (commissioning)

Polarized ³He Lab at Tsinghua for fundamental symmetry studies

H. Gao et al.

Summary

- Spin and polarization: amazing phenomenon with broad applications
- Introduction to polarized ³He: SEOP and MEOP, tremendous progress
- Polarized ³He: critical for neutron spin structure study,

wide range of fundamental physics,

medical imaging and other applications

- JLab: SEOP, neutron and ³He spin physics Highest polarized luminosity and highest FOM Future: improve luminosity by one order of magnitude
- Polarized 3He groups in USA, Europe and Asia
- Pioneering work just started in China (Lanzhou/Hefei, Tsinghua, ...)
- Useful tool for spin physics and great potential for applications