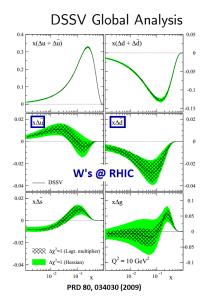
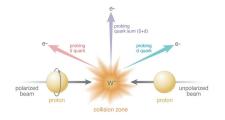
Measurement of Longitudinal Spin Asymmetries for Weak Boson Production in Polarized Proton-Proton Collisions at STAR

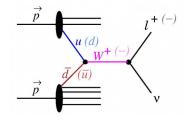
Jinlong Zhang , for the STAR Collaboration


Shandong University & Brookhaven National Laboratory

The 21st International Symposium on Spin Physics October 21st, 2014

Flavor Separation of Proton Spin


 $< S_p >= \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$ (Jaffe-Manohar, 1990)

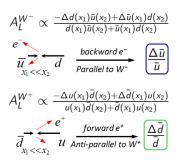

$$\Delta \Sigma = \int (\Delta u + \Delta d + \Delta s + \Delta \bar{u} + \Delta \bar{d} + \Delta \bar{s}) dx$$

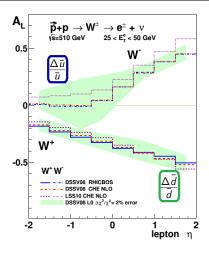
• $\Delta\Sigma\sim 30\%$ from DIS data

- Flavor separated contributions are not well constrained yet
- RHIC W program ?

Why Ws ? — Unique Probe to Sea Quark Polarization

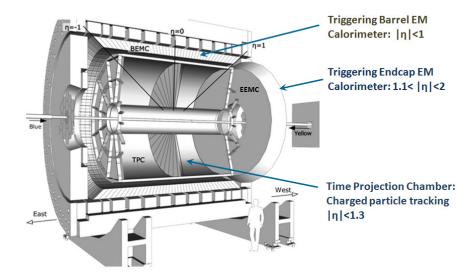
- *W*s couple directly to the quarks and anti-quarks of interest
- V-A coupling of the weak interaction leads to perfect spin separation
- W charges allow flavor separation
- Detect W^+/W^- through e^+/e^- decay channels


$$\begin{split} u + \bar{d} &\rightarrow W^+ \rightarrow e^+ + \nu \\ d + \bar{u} &\rightarrow W^- \rightarrow e^- + \bar{\nu} \end{split}$$

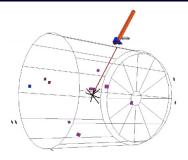

Measure parity-violating single-spin asymmetry:

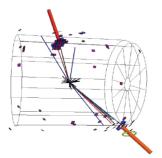
$$A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

Expectation for W A_L


- Large parity-violating asymmetries expected.
- Simplified interpretation at forward and backward rapidity.

*Charged lepton tends to be emitted parallel (anti-parallel) to $W^-(W^+)$ due to the handedness of produced neutrino.

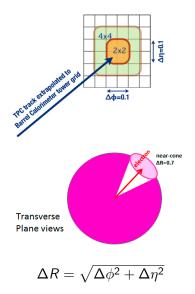

STAR Detector Overview

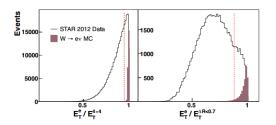


Sample W Candidates

 $W \rightarrow e + \nu$ Candidate Event:

- Isolated track pointing to isolated EM cluster in calorimeter
- Large "missing energy" opposite the electron candidate

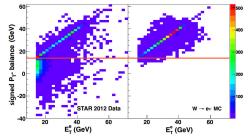



QCD Background Event:

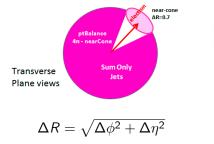
- Several tracks pointing to EM energy deposit in several towers
- Vector p_T sum is balanced by opposite jet, no large "missing energy"

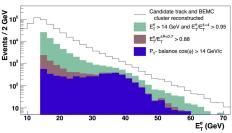
Isolation Cuts

- Match p_T > 10 GeV track to EMC cluster
- Require the energy deposited in the next ring to be <5% of the 2x2 sum
- Require the ratio $E_T^e/E_T^{\Delta R < 0.7}$ to be > 88%



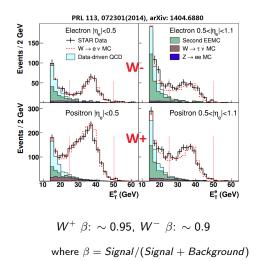
Topological Cuts


 P_T -balance:


$$\vec{p_T}^{bal} = \vec{p_T}^e + \sum_{\Delta R > 0.7} \vec{p_T}^{jets}$$

signed P_T -balance = $\frac{\vec{p_T}^e \cdot \vec{p_T}^{bal}}{|\vec{p_T}^e|}$ required to be > 14GeV

* Signed p_T -balance vs. E_T^e (data on the left and W MC embedded simulation on the right)



* E_{T}^{e} distribution as background cut away

Jinlong Zhang(SDU)

SPIN2014, October 21st, 2014

Mid-rapidity Background Estimation

W signal

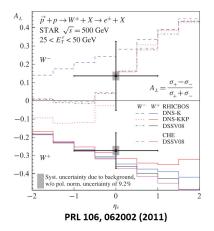
• "Jacobian Peak"

Primary Background:

Satisfy W selection cuts but contain jets escaping detection at $\eta < -1$ and $\eta > 2$.

• Second EEMC

Estimate non-existent "east" EEMC background based on real west EEMC

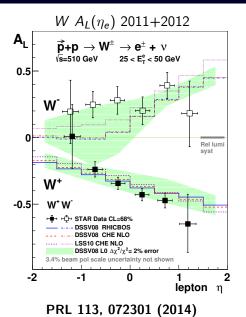

Data-driven QCD

Electroweak Background: Determined from Monte-Carlo

simulation.

- $Z \rightarrow ee MC$
- $\mathbf{W} \rightarrow \tau \nu \mathbf{MC}$

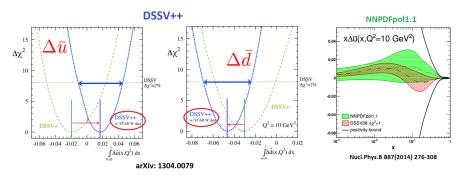
$\ensuremath{\mathcal{W}}$ Data from 2009 to 2012



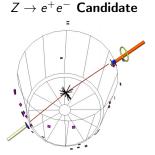
 2009 was a very successful first 500 GeV physics run Statistics increase by an order of magnitude from 2009 to 2012:

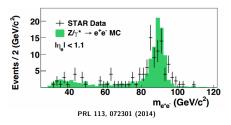
STAR pp500 Longitudinal					
Run	L (pb ⁻¹)	$P^2L(pb^{-1})$	$W^+(W^-)$		
2009	12	1.7	462 (192)		
2011	9	2.3	342 (103)		
2012	77	24	2417 (734)		

- With larger statistics, we can look into lepton pseudo-rapidity, η_e, dependence of spin asymmetry
- ✓ To accommodate the low statistics of 2011 dataset, Profile Likelihood method was used in combination of 2011 and 2012

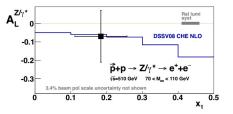

W A_L Result of 2011+2012

- STAR measured the parity-violating single-spin asymmetry A_L for $|\eta_e| < 1.4$ from 2011 and 2012 data
- Provide the first detailed look at the asymmetry's η_e dependence
- $A_L(W^+)$ is consistent with theoretical prediction
- $A_L(W^-)$ is larger than the predictions for $\eta_e < 0$, which is particularly sensitive to $\Delta \bar{u}$


Jinlong Zhang(SDU)

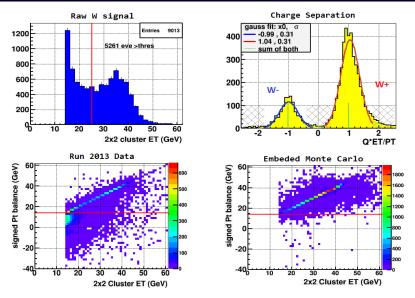

Impact of STAR Result

- STAR 2012 results included in global fits by DSSV and NNPDF.
- STAR run 2012 W results provide significant new constraints on \bar{u} and \bar{d} polarization.
- Shift in best fit values for $\Delta \bar{u}$ and $\Delta \bar{d}$ after including STAR new results


$Z A_L$ Result of 2011+2012

- Fully reconstructed e^+e^- final state.
- Reconstruct initial state kinematics at leading order:

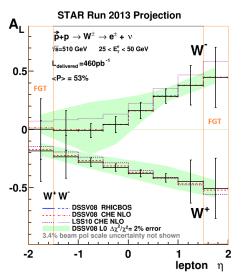
$$x_{1(2)} = rac{M_{ee}}{\sqrt{s}}e^{\pm yZ}$$



STAR pp500 Longitudinal				
Run	$L(pb^{-1})$	Р	FOM	
2009	12	0.38	1.7	
2011	9.4	0.49	2.3	
2012	77	0.56	24	
2013	~300	~ 0.53	\sim 84	

* where FOM stands for figure of merit, P^2L (pb^{-1})

• In 2013, STAR collected an integrated luminosity of \sim 300 pb⁻¹ at $\sqrt{s} = 510$ GeV with an average beam polarization of \sim 53%, which is 3 times greater than total of previous years in FOM.

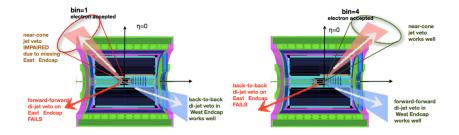

Analysis Status of $W A_L$ for Run 2013

* roughly half of the total statistics of run 2013

Jinlong Zhang(SDU)

Projection of $W A_L$ for Run 2013

FGT was fully installed for Run13


- Extension of backward and forward acceptance enhances sensitivity to \bar{u} and \bar{d} quark polarization
- Higher precision result is expected from much larger statistics of run13 database (being analyzed).

- STAR has measured the parity-violating A_L of W bosons as a function of decayed lepton pseudo-rapidity, η_e , which provides significant constraints on $\Delta \bar{u}$ and $\Delta \bar{d}$
- New constraints on light sea quark polarization from W data, preferring a positive $\Delta \bar{u}$
- Higher precision data being analyzed now from Run 13.

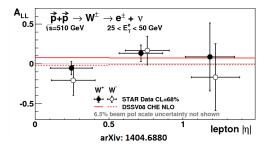
New results are coming!

Second EEMC Background

The background events rejected by the **real** EEMC which are measured in the positive detector η bins correspond to the background event that would be removed from the signal yield in the negative detector η bins by a **fictitious** EEMC on the east side of STAR.

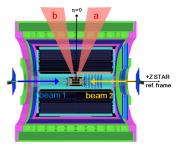
- Beam polarization uncertainty: correlated scale 3.4%
- Relative luminosity uncertainty: correlated offset $\Delta A_L = 0.007$
- Background estimation: less than 10% of statistical error

W ALL Result of 2011+2012


Measure double spin asymmetry:

$$A_{LL} = \frac{(\sigma^{++} + \sigma^{--}) - (\sigma^{+-} + \sigma^{-+})}{(\sigma^{++} + \sigma^{--}) + (\sigma^{+-} + \sigma^{-+})}$$

• Probes different combination of quark polarizations


$$A_{LL}^{W^+} \sim \frac{\Delta u}{u} \frac{\Delta \bar{d}}{\bar{d}} \qquad A_{LL}^{W^-} \sim \frac{\Delta d}{d} \frac{\Delta \bar{u}}{u}$$

- Proposed to test positivity constraints using a combination of AL and ALL
- · First measurement is consistent with predictions from DSSV

Extract Spin Asymmetry with Profile Likelihood Method

- ✓ Profile Likelihood method was used in combination of 2011 and 2012
- ✓ Accommodate the low statistics of 2011 dataset

Define a likelihood function for 8 spin-dependent yields from pair of symmetric η region of STAR :

 $L = \prod_{i}^{4} \mathcal{P}(M_{i}^{a} | \mu_{i}^{a}) \mathcal{P}(M_{i}^{b} | \mu_{i}^{b}) g(\beta^{a}) g(\beta^{b})$

 \$\mathcal{P}(M_i|\mu_i)\$ is Poisson probability, for measured spin sorted yield M_i in the expected value \$\mu_i\$ given by :

$$\begin{split} \mu_{++}^{a} &= l_{++} N (1 + P_1 \beta A_L^{+\eta e} + P_2 \beta A_L^{-\eta e} + P_1 P_2 \beta A_{LL}) \\ \mu_{+-}^{a} &= l_{+-} N (1 + P_1 \beta A_L^{+\eta e} - P_2 \beta A_L^{-\eta e} - P_1 P_2 \beta A_{LL}) \\ \mu_{-+}^{a} &= l_{-+} N (1 - P_1 \beta A_L^{+\eta e} + P_2 \beta A_L^{-\eta e} - P_1 P_2 \beta A_{LL}) \\ \mu_{--}^{a} &= l_{--} N (1 - P_1 \beta A_L^{+\eta e} - P_2 \beta A_L^{-\eta e} + P_1 P_2 \beta A_{LL}) \end{split}$$

*where $P_1(P_2)$ beam polarization, $A_L^{+\eta e}(A_L^{-\eta e})$ single-spin asymmetry, A_{LL} double-spin asymmetry, N_a spin averaged yield, $l_{\pm\pm}$ the relative luminosity

• $g(\beta)$ is Gaussian probability for estimated dilution background, $\beta = S/(S + B)$.

Extract asymmetries from likelihood function $L_{2011} \times L_{2012}$

Jinlong Zhang(SDU)

SPIN2014, October 21st, 2014