New COMPASS results on Transverse Spin Asymmetries in Hadron Pair Production in DIS

giulio sbrizzai (trieste university and INFN) on behalf of the COMPASS Collaboration

22/10/2014 spin2014 Beijing

Collaboration
~ 250 physicists
28 institutions
12 countries


```
COMPASS}\begin{array}{ll}{\mathrm{ COmmon }}\\{=}&{\mathrm{ Muon and }}\\{\mathrm{ Proton }}\\{\mathrm{ Apparatus for }}\\{\mathrm{ Structure and }}\\{\mathrm{ Spectroscopy }}
wide physics program carried on
using both muon and hadron beam
luminosity: }\quad~5\cdot1\mp@subsup{0}{}{32}\mp@subsup{\textrm{cm}}{}{-2}\mp@subsup{\textrm{s}}{}{-1
beam intensity: 2:108 }\mp@subsup{\mu}{}{+}/\mathrm{ spill (4.8s/16.2s)
beam momentum: }160\textrm{GeV}/
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{7}{*}{longitudinally polarized muon beam} & deuteron (6LID) & \[
\begin{aligned}
& 2002 \\
& 2003
\end{aligned}
\] & L/T & hadron beam & nuclear targets & 2004 \\
\hline & polarized target & 2004 & & & \multirow{5}{*}{LH target} & 2008 \\
\hline & & 2006 & L & & & 2009 \\
\hline & proton ( \(\mathrm{NH}_{3}\) ) & 2007 & L/T & & & 2012 \\
\hline & polarized target & 2010 & T & & & \\
\hline & & 2011 & L & & & \\
\hline & \(\mathrm{H}_{2}\) target & 2012 & & & & \\
\hline
\end{tabular}
```


the COMPASS spectrometer

- high energy beams
- large angular acceptance
- broad kinematical range

two stages spectrometer

Large Angle Spectrometer (SM1)
Small Angle Spectrometer (SM2)
variety of tracking detectors

polarized target system (>2005)
solid state target operating in frozen spin mode

	$\mathrm{d}\left({ }^{6} \mathrm{LiD}\right)$	$\mathrm{p}\left(\mathrm{NH}_{3}\right)$
polarization	50%	90%
diliution factor	40%	16%

3 cells target with
opposite polarizations

2 configurations:
polarisation reversed each week to minimize possible systematic errors

results on 2 charged hadron production in DIS on transversely polarised target

$$
\ell(k)+N(P) \rightarrow \ell\left(k^{\prime}\right)+H_{1}\left(P_{1}\right)+H_{2}\left(P_{2}\right)+X
$$

we measure

$$
N_{h^{+} h^{-}} \propto \sigma_{U U}\left(1+f(x, y) P_{T} D_{n n}(y) A_{U T}^{\sin \phi_{R S}} \sin \theta \sin \phi_{R S}\right) \quad \begin{aligned}
& \text { on oppositely charged } \\
& \text { hadrons pairs }
\end{aligned}
$$

the azimuthal distribution of the hadrons pairs shows a modulation in the azimuthal angle:
$\phi_{R S}=\phi_{R}+\phi_{S}-\pi$
$A_{U T}^{\sin \phi_{R S}}(x, z, M)$ asymmetries measured as function of $\mathrm{x}, \mathrm{z}=\mathrm{z} 1+\mathrm{z} 2, \mathrm{M}_{\mathrm{inv}}$

 giulio sbrizzai (spin2014)

2002-2004 deuteron + 2007 proton data published in 2012
these data were used in JHEPO3(2013)119 (Bacchetta, Courtoy, Radici):
extraction of the tranversity PDF (collinear mechanism)

$\left.\begin{array}{c}A_{U T}^{\sin \phi_{R S}}(x, z, M)=\frac{\sum_{q} e_{q}^{2} \cdot h_{1}^{q}(x) \cdot H_{q}^{2 h}(z, M)}{\sum_{q} e_{q}^{2} \cdot f_{1}^{q}(x) \cdot D_{q}^{2 h}(z, M)}\end{array} \begin{array}{l}\text { 2h interference } \\ \text { fragmentation } \\ \text { function IFF }\end{array}\right\}$

- H calculated using model tuned on belle data
- D from model, tuned on MC generator
- f well known from PDF tables
asymmetries measured as function of x (integrated over z and M) are then:

$$
A_{U T, p}^{\sin \phi_{R S}}(x)=\underbrace{}_{\text {proton target }} \text { calculated } \longleftrightarrow \cdot\left(x h_{1}^{u_{v}}-x h_{1}^{d_{v}} / 4\right) \quad A_{U T, d}^{\sin \phi_{R S}}(x)=\widehat{c_{d}}) \cdot\left(x h_{1}^{u_{v}}+x h_{1}^{d_{v}}\right)
$$

using some functional form for the valence transversity distribution:

extract from proton data $\quad x h_{1}^{u_{v}}-x h_{1}^{d_{v}} / 4$

HERMES				
data				
x	y	$Q^{2}\left[\mathrm{GeV}^{2}\right]$	$A_{\text {SIDIS }}$	$h_{1}^{u_{v}}-h_{1}^{d_{v}} / 4$
0.033	0.734	1.232	0.015 ± 0.010	0.086 ± 0.061
0.047	0.659	1.604	0.002 ± 0.011	0.010 ± 0.054
0.068	0.630	2.214	0.035 ± 0.011	0.167 ± 0.069
0.133	0.592	4.031	0.020 ± 0.010	0.092 ± 0.054
COMPASS				
proton	data			
x		$Q^{2}\left[\mathrm{GeV}^{2}\right]$	$A_{\text {SIDIS }}$	$h_{1}^{u_{v}}-h_{1}^{d_{v}} / 4$
0.0065		1.232	0.026 ± 0.030	0.10 ± 0.12
0.0105		1.476	0.010 ± 0.016	0.038 ± 0.059
0.0164		1.744	0.015 ± 0.013	0.057 ± 0.049
0.1330		2.094	0.008 ± 0.010	0.031 ± 0.039
0.0398		2.802	0.027 ± 0.011	0.107 ± 0.049
0.0626		4.342	0.029 ± 0.014	0.118 ± 0.060
0.1006		6.854	0.051 ± 0.016	0.208 ± 0.079
0.1613		10.72	0.108 ± 0.023	0.42 ± 0.12
0.2801		21.98	0.080 ± 0.033	0.24 ± 0.11
COMPASS				
	deuteron	data		
x	$Q^{2}\left[\mathrm{GeV}^{2}\right]$	$A_{\text {SIDIS }}$	$h_{1}^{u_{v}}+h_{1}^{d_{v}}$	
0.0064		1.253	0.005 ± 0.024	0.05 ± 0.24
0.0105		1.508	-0.004 ± 0.012	-0.04 ± 0.12
0.0163		1.792	0.028 ± 0.010	0.28 ± 0.11
0.0253		2.266	-0.005 ± 0.009	-0.051 ± 0.094
0.0396	3.350	0.006 ± 0.011	0.06 ± 0.12	
0.0623		5.406	-0.006 ± 0.014	-0.06 ± 0.14
0.0996	8.890	-0.029 ± 0.019	-0.30 ± 0.20	
0.1597		15.65	-0.017 ± 0.030	-0.16 ± 0.28
0.2801	33.22	0.078 ± 0.054	0.50 ± 0.36	

extract from deuteron data $x h_{1}^{u_{v}}+x h_{1}^{d_{v}}$

transversity for u and d valence quarks obtained from the flexible scenario

the COMPASS data used in this analysis are the 2002-2004 deuteron and the 2007 proton data the results are on unidentified hadrons (assumed to be all pions in the calculations)

- identified hadrons on transversity polarised deuteron and proton

use the COMPASS results on identified hadrons to re-evaluate transversity using the c_{p} and c_{d} calculated in Bacchetta et al.
$A_{U T, d}^{\sin \phi_{R S}}(x) / c_{d}$

$$
A_{U T, p}^{\sin \phi_{R S}}(x) / c_{p}
$$

$$
x h_{1, p}=x h_{1}^{u}\left(x ; Q^{2}\right)-\frac{1}{4} x h_{1}^{d}\left(x ; Q^{2}\right)
$$

from proton data:

extraction of the transversity bin by bin (no use of functional parametrisation)
$x h_{1}^{u}$ and $x h_{1}^{d}$ are obtained by solving the system of equations:

$$
x h_{1}^{u}\left(x ; Q^{2}\right)
$$

$x h_{1}^{d}\left(x ; Q^{2}\right)$

C.B.@DIS2014
compared with the results of Bacchetta et al.
$x h_{1}^{u}\left(x ; Q^{2}\right)$

$$
x h_{1}^{d}\left(x ; Q^{2}\right)
$$

also: transversity extraction using only COMPASS and BELLE results, no models
\rightarrow see talk by Franco Bradamante
another interesting quantity can be measured by combining COMPASS and BELLE results on the 2 h asymmetries

$$
\int_{\Omega_{x}}\left(4 x h_{1}^{u_{v}}-x h_{1}^{d_{v}}\right) d x
$$

work by
Franco Bradamante
Andrea Bressan
Anna Martin
GS
and which can be compared with theoretical calculations
belle asymmetries

$$
a_{12}\left(z_{1}, z_{2}, M_{1}, M_{2}\right) \approx-\frac{5}{8} \frac{s^{2}}{1+c^{2}}\left(\frac{H_{u}}{D_{u}}\right)^{2}
$$

multi dimensional extraction $\left(z_{1}, z_{2}\right)\left(z_{1}, M_{1}\right), \ldots$ and $\mathrm{a}_{12}{ }^{\prime}$ which
is the asymmetry integrated over
the whole kinematic range

compass asymmetries
$\left\langle A_{U T, p}^{\sin \phi_{R S}} \sin \vartheta\right\rangle(x, z, M) \approx \frac{4 x h_{1}^{u_{v}}-x h_{1}^{d_{v}}}{4 x f_{1}^{u}+x f_{1}^{d}} \cdot \frac{H_{u}}{D_{u}}$
comparison

- neglecting possible different Q2 evolution of the spin dependent and spin independent terms (small effect)
- the kinematic values (z, M) explored by the two experiments are similar (differences have been neglected)
comparing asymmetries as function of z :

BELLE asymmetries as function of z_{1} (integrated over $\mathrm{M}_{1}, \mathrm{z}_{2}, \mathrm{M}_{2}$)

$$
\left\langle a_{12}\left(z_{1}\right)\right\rangle=-\frac{5}{8} \frac{s^{2}}{1+c^{2}} \frac{\int_{\substack{S M_{1}}} d M_{1} H_{u}\left(z_{1}, M_{1}\right)}{\int_{\substack{ }} d M_{1} D_{u}\left(z_{1}, M_{1}\right)} \cdot\left\langle a_{I}\right\rangle
$$

measured quantities !
calculated from the measured

$$
\left\langle a_{1}\right\rangle=\frac{\int_{\Omega_{2} z_{2}} d z_{2} \int_{\Omega M_{2}} d M_{2} H_{u}\left(z_{2}, M_{2}\right)}{\int_{\Omega z_{2}} d z_{2} \int_{\Omega M_{2}} d M_{2} D_{u}\left(z_{2}, M_{2}\right)}
$$ integrated asymmetry

same term over the same kinematic range!

$$
\left\langle A_{U T, p}^{\sin \phi_{R S}} \sin \vartheta\right\rangle(z)=\frac{\int_{\Omega x} d x\left(4 x h_{1}^{u_{v}}-x h_{1}^{d_{v}}\right)}{\int_{\Omega x} d x\left(4 x f_{1}^{u}+x f_{1}^{d}\right)} \cdot \frac{\int_{\Omega M} d M H_{u}(z, M)}{\int_{\Omega M} d M D_{u}(z, M)}
$$

COMPASS 2 h asymmetries as function of z

$$
\cdot \frac{\int_{\Omega M} d M H_{u}(z, M)}{\int_{\Omega M} d M D_{u}(z, M)}
$$

same z trend suggested by the data

$$
\left\langle a_{12}\left(z_{1}\right)\right\rangle
$$

$\left\langle A_{U T, p}^{\sin \phi_{R S}} \sin \vartheta\right\rangle(z)$
$\frac{\left\langle A_{U T, p}^{\sin _{p} \phi_{S P}} \sin \vartheta\right\rangle(z)}{\left\langle a_{p}\left(z_{1}\right)\right\rangle}=\frac{\int_{\Omega x} d x\left(4 x h_{1}^{u_{v}}-x h_{1}^{d_{v}}\right)}{C}$

$$
\begin{gathered}
\left\langle a_{p}\left(z_{1}\right)\right\rangle=\frac{\left\langle a_{12}\left(z_{1}\right)\right\rangle}{\left\langle a_{I}\right\rangle} \cdot \frac{-8}{5} \cdot \frac{1+c^{2}}{s^{2}} \\
C=\int_{\Omega x} d x\left(4 x f_{1}^{u}+x f_{1}^{d}\right)=1.801
\end{gathered}
$$

calculated using CTEQ PDF

same quantity calculated from asymmetries as functions of M
$\frac{\left\langle A_{U T, p}^{\sin \phi_{R S}} \sin \vartheta\right\rangle(M)}{\left\langle a_{p}\left(M_{1}\right)\right\rangle}=\frac{\int_{\Omega x} d x\left(4 x h_{1}^{u_{v}}-x h_{1}^{d_{v}}\right)}{C}$
$\underline{\left\langle A_{U T, p}^{\sin \phi_{p S}} \sin \vartheta\right\rangle(M)}$

another interesting topic recently studied by COMPASS and still ongoing

1. Observation of almost equal shape and strength of the Collins asymmetry of h^{+} and the dihadron $h^{+} h^{-}$asymmetry.

Collins vs. dihadron asymmetries $\Delta \Phi$ dependence

these results were presented at transversity 2014 (by Christopher Braun)
more results in Franco Bradamante's talk on Friday
end

backup

