New COMPASS results on Transverse Spin Asymmetries in Hadron Pair Production in DIS

giulio sbrizzai (trieste university and INFN) on behalf of the COMPASS Collaboration

22/10/2014 spin2014 Beijing

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

Collaboration ~ 250 physicists 28 institutions 12 countries

COmmon Muon and Proton Apparatus for Structure and Spectroscopy

wide physics program carried on using both muon and hadron beam

luminosity: $\sim 5 \cdot 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ beam intensity: $2 \cdot 10^8 \mu^+$ /spill (4.8s/16.2s)beam momentum:160 GeV/c

	deuteron (⁶ LID)	2002 2003 -	L/-
longitudinally	polarized target	2004	
polarized		2006	L
muon beam	proton (NH ₃)	2007	L/
	polarized target	2010	Т
		2011	L
	H_2 target	2012	

nadron beam	nuclear targets	2004
	LH target	2008 2009 2012

the COMPASS spectrometer

- high energy beams
- large angular acceptance
- broad kinematical range

two stages spectrometer

Large Angle Spectrometer (SM1) Small Angle Spectrometer (SM2)

COMPA

polarized target system (>2005)

solid state target operating in frozen spin mode

3 cells target with opposite polarizations

2 configurations: polarisation reversed each week to minimize possible systematic errors

results on 2 charged hadron production in DIS on transversely polarised target

$$\ell(k) + N(P) \to \ell(k') + H_1(P_1) + H_2(P_2) + X$$

we measure

$$N_{h^+h^-} \propto \sigma_{UU} \left(1 + f(x,y) P_T D_{nn}(y) A_{UT}^{\sin\phi_{RS}} \sin\theta \sin\phi_{RS} \right)$$

on oppositely charged hadrons pairs

the azimuthal distribution of the hadrons pairs shows a modulation in the azimuthal angle:

$$\phi_{\rm RS} = \phi_{\rm R} + \phi_{\rm S} - \pi$$

$A_{UT}^{\sin\phi_{RS}}(x, z, M)$ asymmetries measured as function of x, z=z1 + z2, M_{inv}

2002-2004 deuteron + 2007 proton data published in 2012

10/22/2014

PLB 713 (2012) 10

giulio sbrizzai (spin2014)

COMPASS

COMPASS

these data were used in <u>JHEP03(2013)119</u> (Bacchetta, Courtoy, Radici): extraction of the tranversity PDF (collinear mechanism)

$$A_{UT}^{\sin\phi_{RS}}(x,z,M) = \frac{\sum_{q} e_q^2 \cdot h_1^q(x) \cdot H_q^{2h}(z,M)}{\sum_{q} e_q^2 \cdot f_1^q(x) \cdot D_q^{2h}(z,M)} \xrightarrow{\text{2h interference fragmentation function IFF}}$$

using: $D_1^u = D_1^{\bar{u}}, \quad D_1^d = D_1^{\bar{d}}, \quad D_1^s = D_1^{\bar{s}},$ $H_1^{\triangleleft u} = -H_1^{\triangleleft d} = -H_1^{\triangleleft \bar{u}} = H_1^{\triangleleft \bar{d}}, \quad H_1^{\triangleleft s} = -H_1^{\triangleleft \bar{s}} = 0.$

- H calculated using model tuned on belle data
- D from model, tuned on MC generator
- f well known from PDF tables

asymmetries measured as function of x (integrated over z and M) are then:

🧈 calculated

$$A_{UT,p}^{\sin\phi_{RS}}(x) = c_{p} \cdot (xh_{1}^{u_{v}} - xh_{1}^{d_{v}}/4)$$

proton target

 $A_{UT,d}^{\sin\phi_{RS}}(x) = c_d \cdot (xh_1^{u_v} + xh_1^{d_v})$

deuteron target

using some functional form for the valence transversity distribution:

	HERMES	data		
x	y	Q^2 [GeV ²]	$A_{\rm SIDIS}$	$h_1^{u_v} - h_1^{d_v}/4$
0.033	0.734	1.232	0.015 ± 0.010	0.086 ± 0.061
0.047	0.659	1.604	0.002 ± 0.011	0.010 ± 0.054
0.068	0.630	2.214	0.035 ± 0.011	0.167 ± 0.069
0.133	0.592	4.031	0.020 ± 0.010	0.092 ± 0.054
	COMPASS	proton	data	
x		Q^2 [GeV ²]	$A_{ m SIDIS}$	$h_1^{u_v} - h_1^{d_v}/4$
0.0065		1.232	0.026 ± 0.030	0.10 ± 0.12
0.0105		1.476	0.010 ± 0.016	0.038 ± 0.059
0.0164		1.744	0.015 ± 0.013	0.057 ± 0.049
0.1330		2.094	0.008 ± 0.010	0.031 ± 0.039
0.0398		2.802	0.027 ± 0.011	0.107 ± 0.049
0.0626		4.342	0.029 ± 0.014	0.118 ± 0.060
0.1006		6.854	0.051 ± 0.016	0.208 ± 0.079
0.1613		10.72	0.108 ± 0.023	0.42 ± 0.12
0.2801		21.98	0.080 ± 0.033	0.24 ± 0.11
	COMPASS	deuteron	data	
x		Q^2 [GeV ²]	$A_{ m SIDIS}$	$h_1^{u_v} + h_1^{d_v}$
0.0064		1.253	0.005 ± 0.024	0.05 ± 0.24
0.0105		1.508	-0.004 ± 0.012	-0.04 ± 0.12
0.0163		1.792	0.028 ± 0.010	0.28 ± 0.11
0.0253		2.266	-0.005 ± 0.009	-0.051 ± 0.094
0.0396		3.350	0.006 ± 0.011	0.06 ± 0.12
0.0623		5.406	-0.006 ± 0.014	-0.06 ± 0.14
0.0996		8.890	-0.029 ± 0.019	-0.30 ± 0.20
0.1597		15.65	-0.017 ± 0.030	-0.16 ± 0.28
0.2801		33.22	0.078 ± 0.054	0.50 ± 0.36

extract from proton data xh_1^n

10/22/2014

transversity for u and d valence quarks obtained from the *flexible scenario*

the COMPASS data used in this analysis are the 2002-2004 deuteron and the 2007 proton data the results are on unidentified hadrons (assumed to be all pions in the calculations)

• identified hadrons on transversity polarised deuteron and proton

recent work by compass (carmine elia, christopher braun)

use the COMPASS results on identified hadrons to re-evaluate transversity using the c_p and c_d calculated in *Bacchetta et al.*

COMPAS

extraction of the transversity bin by bin (no use of functional parametrisation)

C.B.@DIS2014

compared with the results of Bacchetta et al.

also: transversity extraction using only COMPASS and BELLE results, no models

→ see talk by Franco Bradamante

10⁻¹

giulio sbrizzai (spin2014)

x

another *interesting quantity* can be *measured* by combining COMPASS and BELLE results on the 2h asymmetries

$$\int_{\Omega_x} (4xh_1^{u_v} - xh_1^{d_v})dx$$

work by Franco Bradamante Andrea Bressan Anna Martin GS

and which can be compared with theoretical calculations

belle asymmetries

 $e+e- \longrightarrow$ back to back jets

compass asymmetries

$$\langle A_{UT,p}^{\sin\phi_{RS}}\sin\theta\rangle(x,z,M) \approx \frac{4xh_1^{u_v} - xh_1^{d_v}}{4xf_1^u + xf_1^d} \cdot \frac{H_u}{D_u}$$

comparison

- neglecting possible different Q2 evolution of the spin dependent and spin independent terms (small effect)
- the kinematic values (z,M) explored by the two experiments are similar (differences have been neglected)

giulio sbrizzai (spin2014)

comparing asymmetries as function of z:

comparing asymmetries as function of z:

same z trend suggested by the data

$$\langle a_{12}(z_1) \rangle$$

$$\langle A_{UT,p}^{\sin\phi_{RS}}\sin\theta\rangle(z)$$

same quantity calculated from asymmetries as functions of M

another interesting topic recently studied by COMPASS and still ongoing

1. Observation of almost equal shape and strength of the Collins asymmetry of h^+ and the dihadron h^+h^- asymmetry.

Collins vs. dihadron asymmetries $\blacktriangleright \Delta \Phi$ dependence

these results were presented at transversity 2014 (by Christopher Braun)

more results in Franco Bradamante's talk on Friday

end

backup