The nucleon spin and angular momentum

Yoshitaka Hatta (Yukawa institute, Kyoto U.)

Outline

- Proton spin decomposition: Problems and resolution
- Orbital angular momentum
- Twist analysis
- Transverse polarization
- Method to compute ΔG on a lattice

1101.5989 (PRD)
1111.3547 (PLB)
1207.5332 (JHEP) with Shinsuke Yoshida
1211.2918 (JHEP) with Kazuhiro Tanaka and S. Yoshida
1310.4263 (PRD) with Xiangdong Ji and Yong Zhao

The proton spin problem

The proton has spin ½. The proton is not an elementary particle.

`Spin crisis'

In 1987, EMC (European Muon Collaboration) announced a very small value of the quark helicity contribution

$\Delta \Sigma = 0.12 \pm 0.09 \pm 0.14$!?

Latest result from NLO global analysis

 $\Delta\Sigma\approx 0.3$

 $\int_{-\infty}^{1} dx \, \Delta G(x) \approx 0.2$

DeFlorian, Sassot, Stratmann, Vogelsang (2014)

QCD angular momentum tensor

QCD Lagrangian \rightarrow Lorentz invariant

 \rightarrow Noether current

 $x^{\mu} \to x^{\mu} + \omega^{\mu\nu} x_{\nu}$

$$\partial_{\mu}M^{\mu\nu\lambda}_{can} = 0$$

QCD angular momentum tensor

canonical energy momentum tensor

$$T_{can}^{\mu\nu} = \bar{\psi}i\gamma^{\mu}\overleftrightarrow{\partial}^{\nu}\psi - F^{\mu\alpha}\partial^{\nu}A^{\alpha} - g^{\mu\nu}\mathcal{L}$$

 \rightarrow Quark OAM \rightarrow Gluon OAM

Jaffe-Manohar decomposition (1990)

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L^q_{can} + L^g_{can}$$

Based on the canonical energy momentum tensor

Operators **NOT** gauge invariant.

Partonic interpretation in the light-cone gauge $A^+ = 0$

Ji decomposition (1997)

Improved (Belinfante) energy momentum tensor

$$\begin{split} \widetilde{T}^{\mu\nu} &= T^{\mu\nu}_{can} + \partial_{\rho} G^{\rho\mu\nu} \quad \leftarrow \text{One can add a total derivative.} \\ &= \overline{\psi} i \gamma^{(\mu} \overleftrightarrow{D}^{\nu)} \psi - F^{\mu\rho} F^{\nu}_{\ \rho} - g^{\mu\nu} \mathcal{L} \\ &\text{quark part} \qquad \text{gluon part} \\ \hline \frac{1}{2} &= J_q + J_g \end{split}$$

Further decomposition in the quark part

$$\bar{\psi}i\gamma^{(\mu}\overleftrightarrow{D}^{\nu)}\psi = \bar{\psi}i\gamma^{\mu}\overleftrightarrow{D}^{\nu}\psi - \frac{1}{4}\epsilon^{\mu\nu\rho\sigma}\partial_{\rho}(\bar{\psi}\gamma_{5}\gamma_{\sigma}\psi)$$

2

$$J_q = \frac{1}{2}\Delta\Sigma + L_q$$

Generalized parton distributions (GPD)

Non-forward proton matrix element

$$J^{q} = \frac{1}{2} \int dx x (H_{q}(x) + E_{q}(x)) \qquad J^{g} = \frac{1}{4} \int dx (H_{g}(x) + E_{g}(x))$$

Two spin communities divided

Complete decomposition

$$\begin{aligned} & M_{\text{quark-spin}}^{\mu\nu\lambda} = -\frac{1}{2} \epsilon^{\mu\nu\lambda\sigma} \bar{\psi} \gamma_5 \gamma_\sigma \psi , & \text{Wakamatsu (2010)} \\ & M_{\text{quark-orbit}}^{\mu\nu\lambda} = \bar{\psi} \gamma^{\mu} (x^{\nu} i D_{\text{pure}}^{\lambda} - x^{\lambda} i D_{\text{pure}}^{\nu}) \psi , \\ & M_{\text{gluon-spin}}^{\mu\nu\lambda} = F_a^{\mu\lambda} A_{\text{phys}}^{\nu a} - F_a^{\mu\nu} A_{\text{phys}}^{\lambda a} , \\ & M_{\text{gluon-orbit}}^{\mu\nu\lambda} = F_a^{\mu\alpha} \Big(x^{\nu} (D_{\text{pure}}^{\lambda} A_{\alpha}^{\text{phys}})_a - x^{\lambda} (D_{\text{pure}}^{\nu} A_{\alpha}^{\text{phys}})_a \Big) \\ & \text{where} \quad A_{phys}^{\mu} = \frac{1}{D^+} F^{+\mu} \qquad D_{pure}^{\mu} = D^{\mu} - i A_{phys}^{\mu} \end{aligned}$$

Gauge invariant completion of Jaffe-Manohar

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L^q_{can} + L^g_{can}$$

OAM from the Wigner distribution

Wigner distribution in QCD Belitsky, Ji, Yuan (2003)

$$W(\vec{x}, \vec{q}) = \int \frac{d^4z}{(2\pi)^4} e^{iqz} \bar{\psi} \left(x - \frac{z}{2} \right) \gamma^{\mu} \psi \left(x + \frac{z}{2} \right)$$
position momentum
Need a Wilson line !

Define
$$\vec{L} = \int dq \, \vec{x} imes \vec{q} \langle W(\vec{x}, \vec{q}) \rangle$$
 Lorce, Pasquini (2011)

Which OAM is this??

Canonical OAM from the light-cone Wilson line YH (2011)

$$\int dq \, \vec{x} \times \vec{q} \, \langle W_{light-cone}(x,q) \rangle = \langle \bar{\psi} \gamma^{\mu} \vec{x} \times i \overleftrightarrow{D}_{pure} \psi \rangle$$

Kinetic OAM from the straight Wilson line
Ji, Xiong, Yuan (2012)
$$\int dq \, \vec{x} \times \vec{q} \, \langle W_{straight}(x,q) \rangle$$
$$= \langle \bar{\psi} \gamma^{\mu} \vec{x} \times i \overleftarrow{D} \psi \rangle$$

Difference between the two OAMs

$$L_{pot} = L - L_{can} = \vec{x} \times \int dx^- \vec{F}$$

`Potential' OAM

Torque acting on a quark Burkardt (2012)

Twist analysis

YH, Yoshida (2012)

see, also, Ji, Xiong, Yuan (2012)

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L^q_{can} + L^g_{can}$$

Understand these relations at the density level

$$\Delta \Sigma = \sum_{f} \int dx \Delta q_{f}(x) \qquad \Delta G = \int dx \Delta G(x)$$
$$L_{can}^{q} = \int dx L_{can}^{q}(x) \qquad \ref{eq:alpha}$$
?

c.f. $\Delta q(x) = \frac{1}{4\pi S^+} \int dz^- e^{ixP^+z^-} \langle PS|\bar{\psi}(z^-)\gamma^+\gamma_5\psi(0)|PS\rangle$

`Density' of OAM

Ji's OAM canonical OAM `potential OAM' $\langle \bar{\psi}x \times D\psi \rangle = \langle \bar{\psi}x \times D_{pure}\psi \rangle + ig \langle \bar{\psi}x \times A_{phys}\psi \rangle$ $A^{\mu}_{phys} = \frac{1}{D^{+}}F^{+\mu}$ `F-type"

For a 3-body operator, it is natural to define the double density.

$$\int d\lambda d\mu e^{i\frac{\lambda}{2}(x_{1}+x_{2})+i\mu(x_{1}-x_{2})} \langle P'S'|\bar{\psi}(-\lambda/2)D^{i}(\mu)\psi(\lambda/2)|PS\rangle$$

$$\sim \epsilon^{ij}\Delta_{j}S^{+}\Phi_{D}(x_{1},x_{2}) \qquad \qquad x_{2}-x_{1}$$

$$\begin{array}{c} x_{1} \\ P \\ P \\ \end{array} \qquad \qquad P'$$

The D-type and F-type correlators are related.

Eguchi, Koike, Tanaka (2006)

$$\langle \bar{\psi}x \times D\psi \rangle = \langle \bar{\psi}x \times D_{pure}\psi \rangle + ig\langle \bar{\psi}x \times A_{phys}\psi \rangle$$

doubly-unintegrate

$$\Phi_D(x_1, x_2) = \delta(x_1 - x_2) L_{can}^q(x_1) + \mathcal{P} \frac{1}{x_1 - x_2} \Phi_F(x_1, x_2)$$
Canonical OAM density
The gluon has zero energy
$$\Rightarrow \text{ partonic interpretation!} \qquad x_2 - x_1 = 0$$

Relation between $L_{can}^{q}(x)$ and twist-3 GPD

$$\int d\lambda e^{i\lambda x} \frac{d\lambda}{2\pi} \langle P'S' | \bar{\psi}(0) \gamma^{\mu} \psi(\lambda) | PS \rangle$$

= $H_q(x) \bar{u}(P'S') \gamma^{\mu} u(PS) + E_q(x) \bar{u}(P'S') \frac{i\sigma^{\mu\nu} \Delta_{\nu}}{2m} u(PS)$ twist-2
+ $G_3(x) \bar{u}(P'S') \gamma^{\mu}_{\perp} u(PS) + \cdots$ twist-3

From the equation of motion,

$$x(H_q(x) + E_q(x) + \underline{G_3(x)}) = \Delta q(x) + \underline{L_{can}^q(x)} + \int dx' \mathcal{P} \frac{1}{x - x'} \left(\Phi_F(x, x') + \tilde{\Phi}_F(x, x') \right)$$

 $\int dx x G_3(x) = -L^q$ integrate

Penttinen, Polyakov, Shuvaev, Strikman (2000)

Quark canonical OAM density

Wandzura-Wilczek part

$$\begin{split} L^q_{can}(x) &= x \int_x^{\epsilon(x)} \frac{dx'}{x'} (H_q(x') + E_q(x')) - x \int_x^{\epsilon(x)} \frac{dx'}{x'^2} \Delta q(x') \\ &- x \int_x^{\epsilon(x)} dx_1 \int_{-1}^1 dx_2 \Phi_F(x_1, x_2) \mathcal{P} \frac{3x_1 - x_2}{x_1^2(x_1 - x_2)^2} \\ &- x \int_x^{\epsilon(x)} dx_1 \int_{-1}^1 dx_2 \tilde{\Phi}_F(x_1, x_2) \mathcal{P} \frac{1}{x_1^2(x_1 - x_2)}. \end{split}$$
First moment:
$$J^q = \frac{1}{2} \Delta \Sigma + L^q_{can} + L_{pot}$$
The bridge between JM and Ji

Gluon canonical OAM density $L_{can}^{g}(x)$

$$\frac{1}{2} \left(H_g(x) + E_g(x) + F_g(x) \right) - \Delta G(x) + 2 \int dx \frac{\Phi_F(X, x)}{x} - 2L_{can}^g(x)$$
$$= -2 \int dx' \frac{\mathcal{P}_F(x, x')}{x(x - x')} - 2 \int dx' \frac{\mathcal{P}_F(x, x')}{x(x - x')}$$

twist-three gluon GPD

twist-three

first moment: $J^g + L_{pot} = \Delta G + L_{can}^g$

Complete transverse spin decomposition?

Longitudinal

YH, Tanaka, Yoshida (2012)

frame-independent way

New movement: Parton physics on a lattice

Question: Can one measure ΔG on a lattice?

$$\Delta G = \int dx \Delta G(x)$$

=
$$\int dx \frac{i}{2xP^+} \int \frac{dy^-}{2\pi} e^{-ixP^+y^-} \langle PS|F^{+\mu}(y^-)W[y^-,0]\tilde{F}_{\mu}^{+}(0)|PS\rangle$$

Nonlocal in the light-cone direction. **Real-time** problem, not calculable in lattice QCD. The same problem for PDF, TMD, GPD,...

 $\widehat{\mathbf{G}}(P_z) = \frac{1}{2P^0} \langle PS | \epsilon^{ij} F^{i0} A^j | PS \rangle$

Instead find something similar and calculable on a lattice. Fix the gauge if necessary. At large momentum $P_z \rightarrow \infty$, there may be a relation. Ji, (2013)

Matching!

Ji, Zhang, Zhao (2013) YH, Ji, Zhao (2013)

Compute $\Delta \widetilde{G}(P_z)$ in some gauge at large momentum, and do the matching.

$$\Delta \tilde{G}(P^z,\mu) = Z_{gg}(P^z/\mu)\Delta G(\mu) + Z_{gq}(P^z/\mu)\Delta \Sigma(\mu)$$

For instance, in Coulomb gauge, Z_{g}

$$I_{gq} = \frac{C_F \alpha_s}{4\pi} \left(\frac{4}{3} \ln \frac{P_z^2}{\mu^2} - \frac{64}{9}\right)$$

Caution: Not all gauges are allowed.

A bright future?

• $A^0 = 0$ gauge is particularly promising for ΔG

Balitsky, Braun (1988); Wakamatsu (2013); YH, Ji, Zhao (2013)

• Generalization to the canonical OAMs.

Ji, Zhang, Zhao (2014)

- x-dependence of PDFs, TMDs, GPDs, etc. may also be calculable. Ji, (2013)
- Matching to all-order? Ma, Qiu, (2014)

→ Talks by Y.Ma, S.Yoshida, J.Zhang, Y.Zhao

Summary

 Complete gauge invariant decomposition of nucleon spin now available in QCD, even at the density level.

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L^q_{can} + L^g_{can}$$

- Relation between the two decomposition schemes (JM vs Ji) fully revealed. The connection to twist-3 GPDs clarified.
- Progress towards calculating spin components on a lattice.