The nucleon spin and angular momentum

Yoshitaka Hatta

(Yukawa institute, Kyoto U.)

Outline

- Proton spin decomposition: Problems and resolution
- Orbital angular momentum
- Twist analysis
- Transverse polarization
- Method to compute ΔG on a lattice

```
1101.5989 (PRD)
1111.3547 (PLB)
1207.5332 (JHEP) with Shinsuke Yoshida
1211.2918 (JHEP) with Kazuhiro Tanaka and S. Yoshida
1310.4263 (PRD) with Xiangdong Ji and Yong Zhao
```


The proton spin problem

The proton has spin $1 / 2$.
The proton is not an elementary particle.

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{z}
$$

Quark model prediction: $\Delta \Sigma=1$
$\Delta \Sigma \approx 0.7$ with relativistic effects

`Spin crisis'

In 1987, EMC (European Muon Collaboration) announced a very small value of the quark helicity contribution

$$
\Delta \Sigma=0.12 \pm 0.09 \pm 0.14!?
$$

Latest result from NLO global analysis
$\Delta \Sigma \approx 0.3$

$$
\int_{0.05}^{1} d x \Delta G(x) \approx 0.2
$$

QCD angular momentum tensor

QCD Lagrangian \rightarrow Lorentz invariant
\rightarrow Noether current
$x^{\mu} \rightarrow x^{\mu}+\omega^{\mu \nu} x_{\nu}$
$\partial_{\mu} M_{c a n}^{\mu \nu \lambda}=0$

QCD angular momentum tensor

$$
M_{c a n}^{\mu \nu \lambda}=x^{\nu} T_{\text {can }}^{\mu \lambda}-x^{\lambda} T_{\text {can }}^{\mu \nu}-\frac{1}{2} \epsilon^{\mu \nu \lambda \rho} \bar{\psi} \gamma_{5} \gamma_{\rho} \psi+F^{\mu \lambda} A^{\nu}-F^{\mu \nu} A^{\lambda}
$$

canonical energy momentum tensor

$$
\begin{aligned}
T_{c a n}^{\mu \nu}= & \bar{\psi} i \gamma^{\mu} \overleftrightarrow{\partial^{\nu}} \psi-F^{\mu \alpha} \partial^{\nu} A^{\alpha}-g^{\mu \nu} \mathcal{L} \\
& \rightarrow \text { Quark OAM } \rightarrow \text { Gluon OAM }
\end{aligned}
$$

Jaffe-Manohar decomposition (1990)

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{c a n}^{q}+L_{c a n}^{g}
$$

Based on the canonical energy momentum tensor
Operators NOT gauge invariant.
Partonic interpretation in the light-cone gauge $A^{+}=0$

Ji decomposition (1997)

Improved (Belinfante) energy momentum tensor

$$
\begin{aligned}
& \widetilde{T}^{\mu \nu}=T_{c a n}^{\mu \nu}+\partial_{\rho} G^{\rho \mu \nu} \quad \leftarrow \text { One can add a total derivative. } \\
& =\bar{\psi} i \gamma^{(\mu} \overleftrightarrow{D}^{\nu)} \psi-F^{\mu \rho} F^{\nu}{ }_{\rho}-g^{\mu \nu} \mathcal{L} \\
& \text { quark part gluon part } \\
& \frac{1}{2}=J_{q}+J_{g}
\end{aligned}
$$

Further decomposition in the quark part
$\left.\bar{\psi} i \gamma^{(\mu \overleftrightarrow{D}}{ }^{\nu}\right) \psi=\bar{\psi} i \gamma^{\mu} \overleftrightarrow{D}^{\nu} \psi-\frac{1}{4} \epsilon^{\mu \nu \rho \sigma} \partial_{\rho}\left(\bar{\psi} \gamma_{5} \gamma_{\sigma} \psi\right) \quad J_{q}=\frac{1}{2} \Delta \Sigma+L_{q}$

Generalized parton distributions (GPD)

Non-forward proton matrix element

$$
\begin{aligned}
& \int d \lambda e^{i \lambda x} \frac{d \lambda}{2 \pi}\left\langle P^{\prime} S^{\prime}\right| \bar{\psi}(0) \gamma^{\mu} \psi(\lambda)|P S\rangle \\
& =\frac{H_{q}(x) \bar{u}}{\pi}\left(P^{\prime} S^{\prime}\right) \gamma^{\mu} u(P S)+\frac{E_{q}(x)}{\pi}\left(P^{\prime} S^{\prime}\right) \frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m} u(P S)
\end{aligned}
$$

Twist-two GPDs

$$
J^{q}=\frac{1}{2} \int d x x\left(H_{q}(x)+E_{q}(x)\right) \quad J^{g}=\frac{1}{4} \int d x\left(H_{g}(x)+E_{g}(x)\right)
$$

Two spin communities divided

measured by PHENIX, STAR, COMPASS, HERMES
Jaffe-Manohar

$$
\begin{aligned}
& \frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta \stackrel{\downarrow}{G}+L_{c a n}^{q}+L_{\text {can }}^{g} \\
& \text { common and } \\
& \text { well-known } \\
& \text { not measured yet } \\
& \text { not even well-defined? }
\end{aligned}
$$

Jaffe-Manohar

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+L_{q}+J_{g}
$$

Define rigorously. Must be related to GPD!
accessible from GPD at JLab, COMPASS, HERMES, J-PARC... also calculated in lattice QCD

Complete decomposition

Chen, Lu, Sun, Wang, Goldman (2008)

$$
M_{\text {quark-spin }}^{\mu \nu \lambda}=-\frac{1}{2} \epsilon^{\mu \nu \lambda \sigma} \bar{\psi}_{\gamma_{5}} \gamma_{\sigma} \psi
$$

Wakamatsu (2010)
Y.H. (2011)

$$
M_{\text {quark-orbit }}^{\mu \nu \lambda}=\bar{\psi} \gamma^{\mu}\left(x^{\nu} i D_{\text {pure }}^{\lambda}-x^{\lambda} i D_{\text {pure }}^{\nu}\right) \psi
$$

$$
M_{\mathrm{gluon-spin}}^{\mu \nu \lambda}=F_{a}^{\mu \lambda} A_{\mathrm{phys}}^{\nu a}-F_{a}^{\mu \nu} A_{\mathrm{phys}}^{\lambda a}
$$

$$
M_{\text {gluon-orbit }}^{\mu \nu \lambda}=F_{a}^{\mu \alpha}\left(x^{\nu}\left(D_{\text {pure }}^{\lambda} A_{\alpha}^{\text {phys }}\right)_{a}-x^{\lambda}\left(D_{\text {pure }}^{\nu} A_{\alpha}^{\text {phys }}\right)_{a}\right)
$$

where $\quad A_{\text {phys }}^{\mu}=\frac{1}{D^{+}} F^{+\mu} \quad D_{\text {pure }}^{\mu}=D^{\mu}-i A_{\text {phys }}^{\mu}$

Gauge invariant completion of Jaffe-Manohar

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{c a n}^{q}+L_{c a n}^{g}
$$

OAM from the Wigner distribution

Wigner distribution in QCD
Belitsky, Ji, Yuan (2003)

$$
W(\vec{x}, \vec{q})=\int \frac{d^{4} z}{(2 \pi)^{4}} e^{i q z} \bar{\psi}\left(x-\frac{z}{2}\right) \gamma^{\mu} \psi\left(x+\frac{z}{2}\right)
$$

position momentum
Need a Wilson line!

Define $\quad \vec{L}=\int d q \vec{x} \times \vec{q}\langle W(\vec{x}, \vec{q})\rangle \quad$ Lorce, Pasquini (2011)
Which OAM is this??

Canonical OAM from the light-cone Wilson line

$$
\int d q \vec{x} \times \vec{q}\left\langle W_{\text {light-cone }}(x, q)\right\rangle=\left\langle\bar{\psi} \gamma^{\mu} \vec{x} \times i \overleftrightarrow{D}_{\text {pure }} \psi\right\rangle
$$

Kinetic OAM from the straight Wilson line

$$
\begin{aligned}
& \text { Ji, Xiong, Yuan (2012) } \\
& \int d q \vec{x} \times \vec{q}\left\langle W_{\text {straight }}(x, q)\right\rangle \\
&=\left\langle\bar{\psi} \gamma^{\mu} \vec{x} \times i \overleftrightarrow{D} \psi\right\rangle
\end{aligned}
$$

Difference between the two OAMs

$$
L_{p o t}=L-L_{c a n}=\vec{x} \times \int d x^{-} \vec{F}
$$

Torque acting on a quark Burkardt (2012)

Twist analysis

YH, Yoshida (2012)
see, also, Ji, Xiong, Yuan (2012)

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{c a n}^{q}+L_{c a n}^{g}
$$

Understand these relations at the density level

$$
\begin{gathered}
\Delta \Sigma=\sum_{f} \int d x \Delta q_{f}(x) \quad \Delta G=\int d x \Delta G(x) \\
L_{c a n}^{q}=\int d x L_{c a n}^{q}(x) \quad \text { ?? }
\end{gathered}
$$

c.f. $\quad \Delta q(x)=\frac{1}{4 \pi S^{+}} \int d z^{-} e^{i x P^{+} z^{-}}\langle P S| \bar{\psi}\left(z^{-}\right) \gamma^{+} \gamma_{5} \psi(0)|P S\rangle$

`Density’ of OAM

$$
\begin{array}{r}
\text { Ji's OAM canonical OAM } \\
\langle\bar{\psi} x \times D \psi\rangle=\left\langle\bar{\psi} x \times D_{\text {pure }} \psi\right\rangle+i g\left\langle\bar{\psi} x \times A_{p h y s} \psi\right\rangle \\
A_{\text {phys }}^{\mu}=\frac{1}{D^{+}} F^{+\mu} \\
\text { '`F-type" }
\end{array}
$$

For a 3-body operator, it is natural to define the double density.

$$
\begin{aligned}
& \int d \lambda d \mu e^{i \frac{\lambda}{2}\left(x_{1}+x_{2}\right)+i \mu\left(x_{1}-x_{2}\right)}\left\langle P^{\prime} S^{\prime}\right| \bar{\psi}(-\lambda / 2) D^{i}(\mu) \psi(\lambda / 2)|P S\rangle \\
& \sim \epsilon^{i j} \Delta_{j} S^{+} \Phi_{D}\left(x_{1}, x_{2}\right) \\
& \text { "D-type" }
\end{aligned}
$$

The D-type and F-type correlators are related.

Eguchi, Koike, Tanaka (2006)

$$
\langle\bar{\psi} x \times D \psi\rangle=\left\langle\bar{\psi} x \times D_{\text {pure }} \psi\right\rangle+i g\left\langle\bar{\psi} x \times A_{\text {phys }} \psi\right\rangle
$$

doubly-unintegrate

$$
\Phi_{D}\left(x_{1}, x_{2}\right)=\delta\left(x_{1}-x_{2}\right) L_{c a n}^{q}\left(x_{1}\right)+\mathcal{P} \frac{1}{x_{1}-x_{2}} \Phi_{F}\left(x_{1}, x_{2}\right)
$$

The gluon has zero energy
\rightarrow partonic interpretation!

Relation between $L_{c a n}^{q}(x)$ and twist-3 GPD

$$
\begin{aligned}
& \int d \lambda e^{i \lambda x} \frac{d \lambda}{2 \pi}\left\langle P^{\prime} S^{\prime}\right| \bar{\psi}(0) \gamma^{\mu} \psi(\lambda)|P S\rangle \\
& =H_{q}(x) \bar{u}\left(P^{\prime} S^{\prime}\right) \gamma^{\mu} u(P S)+E_{q}(x) \bar{u}\left(P^{\prime} S^{\prime}\right) \frac{i \sigma^{\mu \nu} \Delta_{\nu}}{2 m} u(P S) \quad \text { twist-2 } \\
& \quad+G_{3}(x) \bar{u}\left(P^{\prime} S^{\prime}\right) \gamma_{\perp}^{\mu} u(P S)+\cdots \quad \text { twist-3 }
\end{aligned}
$$

From the equation of motion,

$$
\begin{aligned}
& x\left(H_{q}(x)+E_{q}(x)+\underline{\left.G_{3}(x)\right)}\right)= \\
& \Delta q(x)+\underline{L_{c a n}^{q}(x)}+\int d x^{\prime} \mathcal{P} \frac{1}{x-x^{\prime}}\left(\Phi_{F}\left(x, x^{\prime}\right)+\tilde{\Phi}_{F}\left(x, x^{\prime}\right)\right) \\
& \square \int d x x G_{3}(x)=-L^{q} \quad \begin{array}{l}
\text { Penttinen, Polyakov, Shuvaev, } \\
\text { Strikman (2000) }
\end{array}
\end{aligned}
$$

Quark canonical OAM density

Wandzura-Wilczek part

$$
\begin{aligned}
L_{c a n}^{q}(x)=x \int_{x}^{\epsilon(x)} & \frac{d x^{\prime}}{x^{\prime}}\left(H_{q}\left(x^{\prime}\right)+E_{q}\left(x^{\prime}\right)\right)-x \int_{x}^{\epsilon(x)} \frac{d x^{\prime}}{x^{\prime 2}} \Delta q\left(x^{\prime}\right) \\
& -x \int_{x}^{\epsilon(x)} d x_{1} \int_{-1}^{1} d x_{2} \Phi_{F}\left(x_{1}, x_{2}\right) \mathcal{P} \frac{3 x_{1}-x_{2}}{x_{1}^{2}\left(x_{1}-x_{2}\right)^{2}} \\
& -x \int_{x}^{\epsilon(x)} d x_{1} \int_{-1}^{1} d x_{2} \tilde{\Phi}_{F}\left(x_{1}, x_{2}\right) \mathcal{P} \frac{1}{x_{1}^{2}\left(x_{1}-x_{2}\right)} .
\end{aligned}
$$

First moment: $\quad J^{q}=\frac{1}{2} \Delta \Sigma+L_{\text {can }}^{q}+L_{p o t}$
The bridge between JM and Ji

Gluon canonical OAM density $L_{\text {can }}^{g}(x)$

$$
\begin{aligned}
& \frac{1}{2}\left(H_{g}(x)\right.+E_{g}(x)+\frac{\left.F_{g}(x)\right)}{\widehat{F_{0}}}-\Delta G(x)+2 \int d X \frac{\Phi_{F}(X, x)}{x}-2 L_{\text {can }}^{g}(x) \\
&=-2 \int d x^{\prime} \left\lvert\, \mathcal{P} \frac{M_{F}\left(x, x^{\prime}\right)}{x\left(x-x^{\prime}\right)}-2 \int d x^{\prime} \mathcal{P} \frac{\tilde{M}_{F}\left(x, x^{\prime}\right)}{x\left(x-x^{\prime}\right)}\right. \\
& \text { twist-three gluon GPD }
\end{aligned}
$$

$$
\begin{gathered}
L_{c a n}^{g}(x)=\frac{x}{2} \int_{x}^{\epsilon(x)} \frac{d x^{\prime}}{x^{\prime 2}}\left(H_{g}\left(x^{\prime}\right)+E_{g}\left(x^{\prime}\right)\right)-x \int_{x}^{\epsilon(x)} \frac{d x^{\prime}}{x^{\prime 2}} \Delta G\left(x^{\prime}\right) \longleftarrow \text { WW part } \\
+2 x \int_{x}^{\epsilon(x)} \frac{d x^{\prime}}{x^{\prime 3}} \int d X \Phi_{F}\left(X, x^{\prime}\right)+2 x \int_{x}^{\epsilon(x)} d x_{1} \int_{-1}^{1} d x_{2} \tilde{M}_{F}\left(x_{1}, x_{2}\right) \mathcal{P} \frac{1}{x_{1}^{3}\left(x_{1}-x_{2}\right)} \\
+2 x \int_{x}^{\epsilon(x)} d x_{1} \int_{-1}^{1} d x_{2} M_{F}\left(x_{1}, x_{2}\right) \mathcal{P} \frac{2 x_{1}-x_{2}}{x_{1}^{3}\left(x_{1}-x_{2}\right)^{2}}
\end{gathered}
$$

first moment: $\quad J^{g}+L_{p o t}=\Delta G+L_{\text {can }}^{g}$
genuine

Complete transverse spin decomposition?

Longitudinal

YH, Tanaka, Yoshida (2012)

cannot be separated in a frame-independent way

New movement:

Parton physics on a lattice

Question: Can one measure ΔG on a lattice?

$$
\begin{aligned}
\Delta G & =\int d x \Delta G(x) \\
& =\int d x \frac{i}{2 x P^{+}} \int \frac{d y^{-}}{2 \pi} e^{-i x P^{+} y^{-}}\langle P S| F^{+\mu}\left(y^{-}\right) W\left[y^{-}, 0\right] \tilde{F}_{\mu}^{+}(0)|P S\rangle
\end{aligned}
$$

Nonlocal in the light-cone direction.
Real-time problem, not calculable in lattice QCD. The same problem for PDF, TMD, GPD,...

$$
\begin{aligned}
& \text { 亿 } \\
& \text { ?? } \\
& \Delta \widetilde{G}\left(P_{z}\right)=\frac{1}{2 P^{0}}{ }^{\left(\left.P S\right|^{i j} F^{F^{0} A^{j}|P S\rangle}\right.}
\end{aligned}
$$

Instead find something similar and calculable on a lattice.
Fix the gauge if necessary.
At large momentum $P_{z} \rightarrow \infty$, there may be a relation. Ji, (2013)

Matching!

Compute $\Delta \widetilde{G}\left(P_{z}\right)$ in some gauge at large momentum, and do the matching.

$$
\Delta \tilde{G}\left(P^{z}, \mu\right)=Z_{g g}\left(P^{z} / \mu\right) \Delta G(\mu)+Z_{g q}\left(P^{z} / \mu\right) \Delta \Sigma(\mu)
$$

$$
\text { For instance, in Coulomb gauge, } \quad Z_{g q}=\frac{C_{F} \alpha_{s}}{4 \pi}\left(\frac{4}{3} \ln \frac{P_{z}^{2}}{\mu^{2}}-\frac{64}{9}\right)
$$

Caution: Not all gauges are allowed.
Coulomb $\vec{\nabla} \cdot \vec{A}=0$
axial $1 \quad A^{0}=0$
axial $2 A^{z}=0$

A bright future?

- $A^{0}=0$ gauge is particularly promising for ΔG Balitsky, Braun (1988); Wakamatsu (2013); YH, Ji, Zhao (2013)
- Generalization to the canonical OAMs.

Ji, Zhang, Zhao (2014)

- x-dependence of PDFs, TMDs, GPDs, etc. may also be calculable. ji, (2013)
- Matching to all-order? Ma, Qiu, (2014)
\rightarrow Talks by Y.Ma, S.Yoshida, J.Zhang, Y.Zhao

Summary

- Complete gauge invariant decomposition of nucleon spin now available in QCD, even at the density level.

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{c a n}^{q}+L_{c a n}^{g}
$$

- Relation between the two decomposition schemes (JM vs Ji) fully revealed. The connection to twist-3 GPDs clarified.
- Progress towards calculating spin components on a lattice.

