

Studies of systematic limitations in the EDM searches at storage rings

The spin tune mapping at COSY

October 21, 2014 | SPIN2014 | Artem Saleev for the JEDI Collaboration

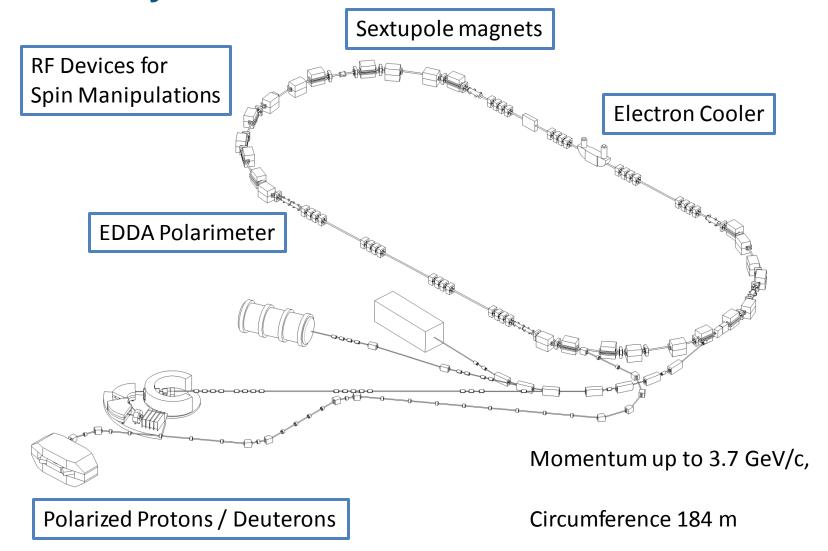
Forschungszentrum Jülich, Germany Landau Institute for Theoretical Physics, Russia Samara State University, Russia

glied der Helmholtz-Gemeinsc

Outline

- Exploring the COSY ring for EDM studies (JEDI)
- Imperfection background to EDM spin precession
- Mapping the spin tune with static solenoids
- Summary

Cooler Synchrotron COSY in Jülich



Spin Motion in Storage Ring

Thomas BMT eqn. for the Magnetic Dipole Moment (MDM)

$$\frac{d\vec{S}}{dt} = \vec{S} \times \vec{\Omega}_{MDM}$$

$$\vec{\Omega}_{MDM} = \frac{q}{m} \left(\vec{G}\vec{B} - \left(\vec{G} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} - \frac{G\gamma}{\gamma + 1} \vec{\beta} (\vec{\beta} \cdot \vec{B}) \right)$$

Spintune := Number of spin turns relative to particle turns, for the ideal pure magnetic ring like COSY:

$$\nu_{s} \coloneqq \frac{\left|\overrightarrow{\Omega}_{MDM}\right|}{\omega_{rev}} = \frac{\frac{q}{m}GB}{\frac{q}{m\gamma}B} = \gamma G$$

Spin Precession by EDM in Pure Magnetic Ring

- The JEDI Collaboration aims at a first direct measurement of the deuteron and proton Electric Dipole Moment (EDM) at COSY
- A current task: exploring the EDM dynamics and systematic limitations of the EDM searches at all magnetic rings
- If particle has $d \neq 0$, T-BMT equation takes form

$$\frac{d\vec{S}}{dt} = -\frac{q}{m} (G\vec{B} + \eta(\vec{\beta} \times \vec{B})) \times \vec{S}(t)$$

Interaction of the EDM with the motional E-field tilts the stable spin axis:

$$\vec{n}_{co} = (\vec{e}_x \sin \xi + \vec{e}_y \cos \xi)$$

where

$$\tan \xi = -\frac{\eta}{G}\beta \qquad \qquad \eta = \frac{d}{q}$$

Imperfection In-plane Fields

- JEDI looks forward to the RF E-field induced EDM rotation without excitation of the coherent betatron oscillations
- RF Wien-Filter as an example: generates the RF modulation of the spin tune, the EDM signal comes from the motional E-field in the ring*
- Misalignment of any magnetic elements produces the in-plane imperfection magnetic fields, so that in general case

$$\vec{n}_{co} = (\vec{e}_x c_1 + \vec{e}_y c_2 + \vec{e}_z c_3)$$

• The nonvanishing c_1 and c_3 generate a background to the EDM-signal of the ideal imperfection-free case

$$c_1 = \sin \xi$$
, $c_3 = 0$

• The challenge is to control background (for example with the accuracy $c_1 \sim 10^{-6} \ rad$ would amount to sensitivity for $d = 10^{-20} \ e \cdot cm$)

^{*«}RF Wien filter in an electric dipole moment storage ring: The "partially frozen spin" effect». William M. Morse, Yuri F. Orlov, Yannis K. Semertzidis. Phys.Rev.ST Accel.Beams 16 (2013) 11, 114001

ed der Helmholtz-Gemeins

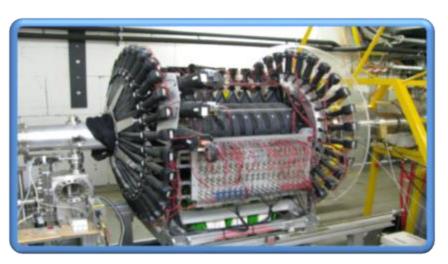
EDDA Polarimeter

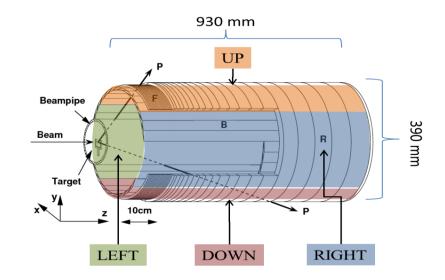
- Left-Right asymmetry
 - ⇒ *vertical* polarization

$$P_V \propto \epsilon_{ver} = \frac{N_l - N_r}{N_l + N_r}$$

- *Up-Down* asymmetry
 - \Rightarrow *horizontal* polarization

$$P_{H} \propto \epsilon_{hor} = \frac{N_{up} - N_{dn}}{N_{up} + N_{dn}}$$





Spin Tune Measurement

Spin vector precesses with $f_{\rm Spin} = v_s f_{rev}$ in the horizontal plane

Asymmetry is given by:

$$\epsilon_{hor}(t) = \frac{N_{up} - N_{dn}}{N_{up} + N_{dn}} \approx AP(t)\sin(2\pi\nu_s f_{rev}t + \phi)$$

What do we expect? (Deuterons, p = 0.97 GeV/c)

$$v_s \approx 0.16$$
, $f_{rev} = 750 \text{ kHz}$

Spin precession frequency: $v_s \cdot f_{rev} \approx 125 \text{ kHz}$

Detector rates: 5 kHz (only every 25th spin revolution is detected)

Special spin tune analysis software resolves ν_s with an accuracy 10^{-8} in 1-second interval

Spin Tune Response to the Artificial Imperfections

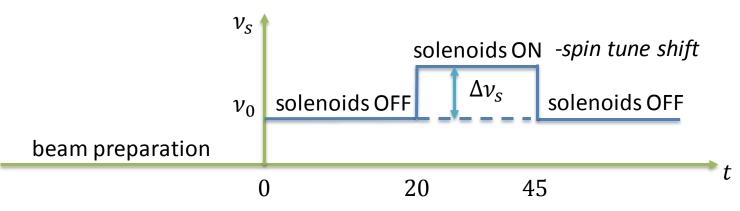
The spin tune is perturbed by spin kicks in the ring imperfection fields:

$$\nu_0 = G\gamma + O(c_1^2, c_3^2)$$

- The idea is to probe the in-plane imperfection fields by introducing well-known artificial imperfections.
- Artificial imperfections: spin kicks χ_1 and χ_2 by compensation solenoids from e-coolers in straight sections

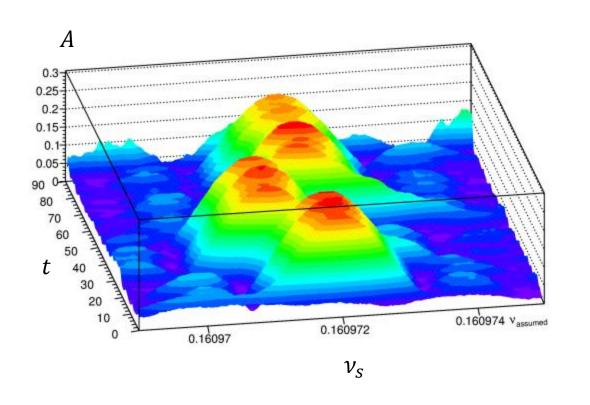
$$v_S = G\gamma + O(c_1^2, c_3^2, \chi_1^2, \chi_2^2)$$

Perform the measurement:



Measurement of Spin Tune Shift

Spin tune shift registered in the data analysis:

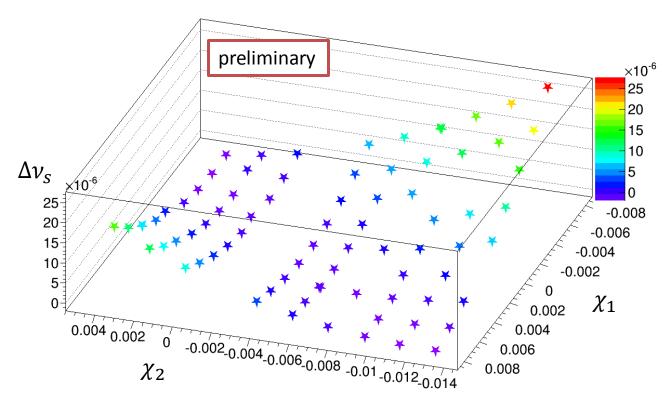


The highest amplitudes of the asymmetry fit correspond to real spin tune values

• The spin tune shift was observed at t = [20, 45] s

The Spin Tune Mapping

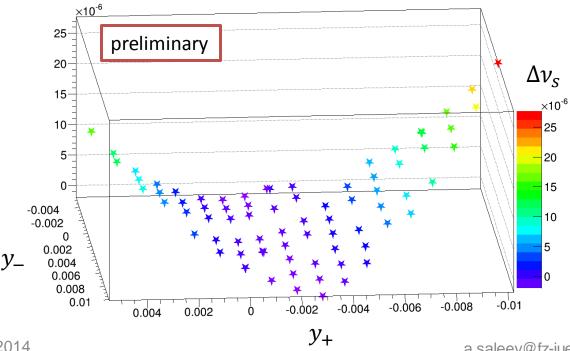
Take multiple measurements with different χ_1 , χ_2 and build a spin tune map $\Delta \nu_s(\chi_1,\chi_2)$:



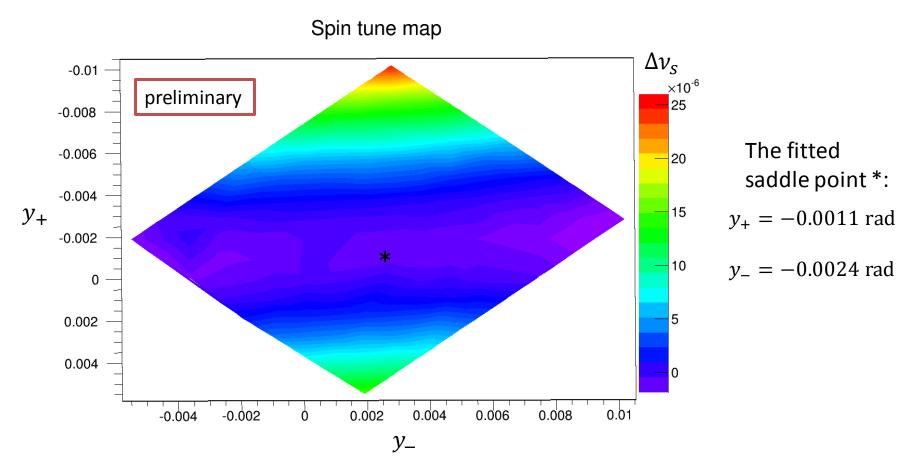
• Spin tune shift w.r.t. the solenoid spin kicks, $\Delta v_s \sim \chi_1^2$, $\Delta v_s \sim \chi_2^2$

The Spin Tune Mapping

- If the kicks are translated to: $y_+ = \frac{\chi_1 + \chi_2}{2}$ $y_- = \frac{\chi_1 \chi_2}{2}$
- then $\Delta v_s \propto y_+^2, y_-^2$
- The distributions of the data points in y_{\pm} dimension share common parabolic features : equal curvature and extremum
- It is a sign that the solenoids work as anticipated



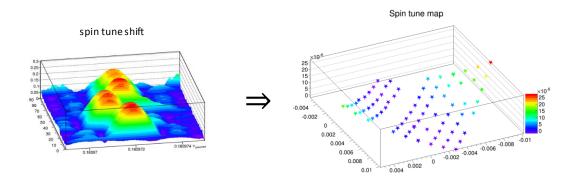
Imperfection Strength



• The theory predicts a saddle point, its position measures the integrated imperfection strength. For an ideal ring, the saddle point would be at $y_+ = 0$

Summary

- The technique of spin tune measurement appears as a precision tool for the systematic analysis of the ring imperfections
- First measurement of the imperfection fields at COSY



❖ The ultimate goal of the JEDI: to understand the EDM dynamics in storage rings as a prerequsite to the construction of the dedicated storage ring for the EDM searches

More Details About Spin Tune Analysis

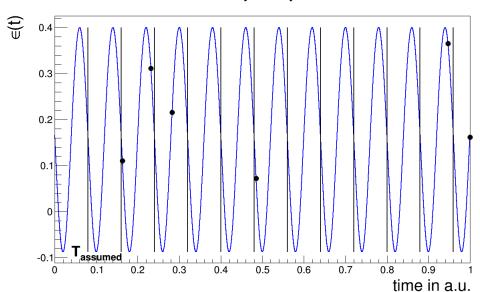
Mapping the Events

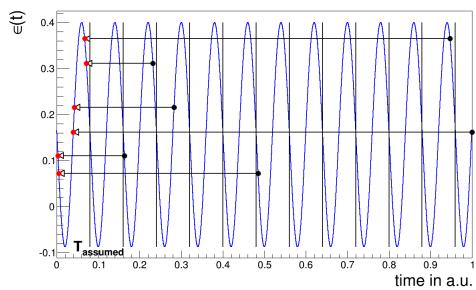
asymmetry

1. Assume Spin Tune $v_{assumed}$ $T_{assumed} = \frac{2\pi}{v_{assumed}f_{rev}}$

Map all events of a macroscopic time interval (2s) in first period:
t' = mod(t, T_{assumed})

3. Fit asymmetry to first period

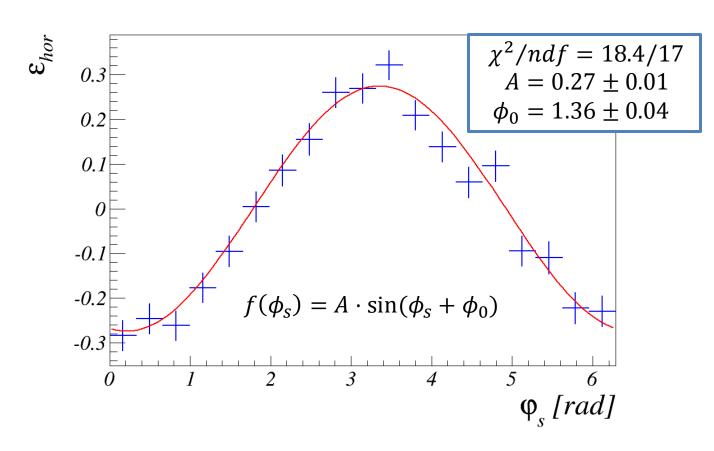




Fit Asymmetry to First Period

 $T_{assumed}$

- Mapping events
- 3. Fit asymmetry to first period



Extract amplitude $A \propto Polarisation$

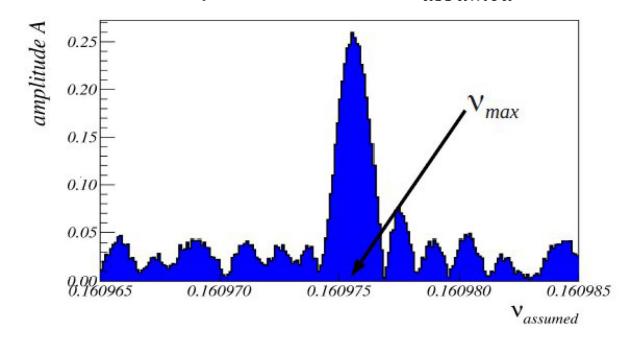
glied der Helmholtz-Gemeins

Find Correct Spin Tune

1. $T_{assumed}$

- Mapping events
- 3. Fit asymmetry to first period

- Vary T_{assumed} and repeat steps 1 to 3
- Plot extracted parameter A vs $v_{assumed}$

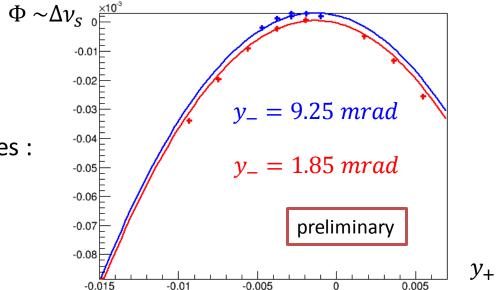


- ν_{max} is correct spine tune in macroscopic time interval (2 s)
- $v_{max} = 0.160975 \pm 10^{-6}$

The Features of the Spin Tune Maps

• Using equal step size $\Delta \chi_1 = \Delta \chi_2$, translate the kicks to: $y_{\pm} = \frac{1}{2} (\chi_1 \pm \chi_2)$

• Fit to Ф



• Spin tune map slices :

• The theoretical analysis: depending on the value of y_{-} the parabola shifts up/down & the extremum stays constant

- Solenoids interact with \vec{e}_z projections of \vec{n}_{co}
- c_3 is given after one of the solenoid, and c_3^* after another
- Model function:

$$\begin{split} \Phi &= \cos \pi (\nu_0 + \Delta \nu_s (y_+, y_-)) - \cos \pi \nu_0 = \\ &- \left[(E + \cos \pi \nu_0) \sin^2 \left(\frac{y_+}{2} \right) + \frac{1}{2} \sin \pi \nu_0 \left(c_3 + c_3^* \right) \sin y_+ + \right. \\ &\left. (E - \cos \pi \nu_0) \sin^2 \left(\frac{y_-}{2} \right) + \frac{1}{2} \sin \pi \nu_0 \left(c_3 - c_3^* \right) \sin y_- \right] \end{split}$$

• for a guidance:

$$\Phi \simeq -\pi \Delta v_s \sin \pi v_0 \propto y_+^2, y_-^2$$

- $E \approx \cos \frac{\pi(\nu_1 \nu_2)}{2} \approx 1$ is related to the difference of horizontal spin phase advances in the arcs
- The theory tells

$$\nu_1 - \nu_2 \sim O(c^2)$$

• The extremum of Φ is a saddle point at

$$y_+, y_- = O(c_3, c_3^*)$$

• With solenoids only we are not sensitive to c_1 , c_1^*

• Once v_0 has been determined, only c_3 and c_3^* are the fit parameters