

Nucleon Structure from Lattice QCD

James Zanotti The University of Adelaide

The 21st International Symposium on Spin Physics, October 20 - 24, 2014, Beijing, China

Outline

- **• (Very) Brief introduction to Lattice QCD**
	- **• Sources of systematic error**
- **• Nucleon Axial Charge**
- **• Nucleon Tensor Charge**
- **• Electromagnetic Form Factors**
	- **• strangeness + charge symmetry violation**
- \cdot Spin content, including Δs [Also see K.-F. Liu (plenary Tue, 8:00)]
- **• Won't cover new method from X.Ji** [PRL 110, 262002 (2013)] (plenary Mon, 8:30)

The Lattice

Ken Wilson (1974)

$$
t \to i \tau
$$

Lattice QCD provides a first principles, systematically improvable approach for QCD

Discretise space-time with lattice spacing *a* **volume** *L3xT*

Quark fields reside on sites $\,\psi(x)$

Gauge fields on the links $\; U_{\mu}(x) = e^{-i a g A_{\mu}(x)}$

Approximate the full QCD path integral by Monte Carlo methods

$$
\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A \mathcal{D} \bar{\psi} \mathcal{D} \psi \, \mathcal{O}[A, \bar{\psi}, \psi] \, e^{-S[A, \bar{\psi}, \psi]} \n\overset{\text{def}}{\longrightarrow} \n\begin{array}{c} \langle \mathcal{O} \rangle \simeq \frac{1}{N_{\text{conf}}} \sum_{i}^{S_{\text{conf}}} \mathcal{O}([U^{[i]}]) \end{array}
$$

With field configurations *Ui* distributed according to *e-S[U]*

Put it on a supercomputer

L=Na

Systematics of a Lattice Calculation

- Extrapolations:
	- Continuum

- Unavoidable
- Improved actions (errors O(*a*2))
- Finer lattice spacings

Systematics of a Lattice Calculation

Systematics of a Lattice Calculation

• Simulate at physical quark masses

Quark Mass Dependence
Nucleon Mass

June 2004: Earth Simulator, 36 TFlops

June 2004: Earth Simulator, 36 TFlops June 2014: Tianhe-2, 34 PFlops

Real-Time Evolution of Lattice Results Nucleon Mass

The Lattice Landscape

[Hoebling (Lattice 2010) 1102.0410]

- **Unphysically large quark masses ***• L L**L**L**L**L**<i>C <i>Plane. <i>L**L**L**C <i>C <i>Cl**L**C <i>Cl**L**C <i>Cl**L**Cl**A <i>Cl**L**Cl**L**Cl**A**A**Z**L**Cl**A**Z**Z**Z*
- where the expected relative error of the pion mass is 1%, 0*.*3% resp. 0*.*1% according to [61]. Data **• Finite Volume**

The Lattice Landscape

[Hoebling (Lattice 2010) 1102.0410]

- **Unphysically large quark masses ***• L L**L**L**L**L**<i>C <i>Plane. <i>L**L**L**C <i>C <i>Cl**L**C <i>Cl**L**C <i>Cl**L**Cl**A <i>Cl**L**Cl**L**Cl**A**A**Z**L**Cl**A**Z**Z**Z*
- where the expected relative error of the pion mass is 1%, 0*.*3% resp. 0*.*1% according to [61]. Data **• Finite Volume**

Neutron axial charge

Relatively simple to compute on the lattice

Good benchmark for hadron structure (understanding systematic errors)

Results systematically 10-20% below experiment

Large scatter in the results

What about lattice systematic errors?

Finite lattice spacing

Large quark masses

Finite volume

Contamination from excited states

What about lattice systematic errors?

Finite lattice spacing

Large quark masses

Finite volume

Contamination from excited states

 $C(\vec{p}, t) = A_0 e^{-E_0(\vec{p})t} + A_1 e^{-E_1(\vec{p})t} + \dots$ **ground state 1st excited state**

What about lattice systematic errors?

Finite lattice spacing

Large quark masses

Finite volume

Contamination from excited states

 $C(\vec{p}, t) = A_0 e^{-E_0(\vec{p})t} + A_1 e^{-E_1(\vec{p})t} + \dots$ exponentially suppressed at large t **ground state 1st excited state**

What about lattice systematic errors?

Finite lattice spacing

Large quark masses

Finite volume

Contamination from excited states

Determination of g_A on the Lattice **A** UIT LIT LALLIUS
Excited state contemination

Lattice spacing dependence Lattice spacing dependence Lattice State contaminent

Excited state contamination

M. Constantinou (Lattice 2014)

1.4 Different colours correspond to different lattice spacings

 Γ $>$ No obvious dependence on *a*

1.2

A

PNDME (HISQ, Nf=2+1+1) Varying the location of the sink

Small suppression of g_A **for small times Feature Few Small Suppression of** a **^t for small**

Lattice volume dependence

Quark mass dependence

Substantial finite size effects

g_A suppressed on a finite volume

HBChPT suggests that enhancement is Figure 7: The renormalize access expected in the infinite volume at light **together with the experimental value galaxy of the experimental value galaxy of the shaded area shows the shaded area shows the shaded area s**

> **Sensitive to (interplay of Delta and N loops)**

gA appears to be very sensitive to Lattice systematics

Lots of effort in reducing systematic errors \Box > flow on for other quantities

$$
Tensor Charge, \tgr = \int dx \left[\delta u(x) - \delta d(x) \right]
$$

g_T appears to be well behaved

 $\, \mathcal{G}_T \, \approx \, 1 \quad$ [c.f. M. Anselmino et al., 1303.3822: $\, g_T = 0.72^{+0.39}_{-0.18}$] $g_T \approx 1$ **[c.f. M. Anselmino et al., 1303.3822:** $g_T = 0.72^{+0.39}_{-0.18}$] $\overline{\text{MS}} \ \mu^2 = 4 \, \text{GeV}^2$

pelaure diputas of the proceed of the calculation. In the calculation, the calculation, the calculation, the c Can some of these questions be addressed by a calculation from Lattice QCD?

Need to determine

$$
\langle p', s'|J^{\mu}(\vec{q})|p, s\rangle = \bar{u}(p', s') \left[\gamma^{\mu} F_1(q^2) + i\sigma^{\mu\nu} \frac{q_{\nu}}{2m} F_2(q^2) \right] u(p, s)
$$

$$
G_E(Q^2) = F_1(Q^2) - \tau F_2(Q^2)
$$

$$
G_M(Q^2) = F_1(Q^2) + F_2(Q^2) \qquad \tau = Q^2/(4M^2)
$$

Electromagnetic Form Factors S. Collins et al (QCDSF):PRD84 (2011) 074507

 2π

 $\frac{1}{L}n_i$

• Strong dependence on quark mass

• Lattice results lie above experiment with smaller slope

Electromagnetic Form Factors S. Collins et al (QCDSF):PRD84 (2011) 074507

 2π

 $\frac{1}{L}n_i$

• Strong dependence on quark mass

• Lattice results lie above experiment with smaller slope

Electromagnetic Form Factors S. Collins et al (QCDSF):PRD84 (2011) 074507

• Strong dependence on quark mass

• Lattice results lie above experiment with smaller slope

Good agreement with parameterisation of experimental data Figure 1: Isovector form factors extrapolated to the physical point. Extrapolations (at fixed *Q*²-values) of the magnetic (a) and

J. Green et al. (LHPC): arXiv:1404.4029 ² (*Q*²) with varying *Q*² max. The last two plots show the dependence on *Q*²

Strangeness Form Factor

Understanding hidden flavour - **A fundamental challenge of hadronic physics**

Contributions arise entirely through interactions with QCD vacuum

Expensive and noisy!

Vanish for isovector quantities (p-n)

Essential for strangeness

Strangeness Form Factor

Strangeness Form Factor
P.Shanahan et al., arXiv:1403.6537

Comparison with experimental contraints

Strangeness Form Factor
P.Shanahan et al., arXiv:1403.6537

Comparison with experimental contraints

Charge Symmetry

u quarks in the proton $\equiv d$ quarks in the neutron

We relied on charge symmetry in our determination of the strangeness form factors

So do the experiments!

EM and weak interactions give access to different combinations of $G^{p,(u/d/s)}$

$$
G^{p,\gamma} = \frac{2}{3} G^{p,u} - \frac{1}{3} (G^{p,d} + G^{p,s})
$$

$$
G^{p,Z} = \left(1 - \frac{8}{3} \sin^2 \theta_W\right) G^{p,u} - \left(1 - \frac{4}{3} \sin^2 \theta_W\right) (G^{p,d} + G^{p,s})
$$

Assume charge symmetry $(G^{p,u} = G^{n,d}, G^{p,d} = G^{n,u}, G^{p,s} = G^{n,s})$

$$
\sum_{\nu} (G_{E/M}^{p,s} = (1 - 4\sin^2 \theta_W) G_{E/M}^{p,\gamma} - G_{E/M}^{n,\gamma} - G_{E/M}^{p,Z})
$$

Charge Symmetry Violation

P.Shanahan et al., in preparation

Determine the degree to which charge symmetry is violated in EM form factors by

Combining chiral perturbation theory fits to isospin-averaged hyperon FFs

Input $\,m_u/m_d$ from experiment (or lattice)

Charge Symmetry Violation

Figure 2012 - Charge Symmetry Violation electric (b) isovector nucleon form factors to infinite volume and the physical pseudoscalar masses are shown compared with the

experimental results (data red band). The blue circles and green crosses denote red band from green crosses denote results derived from green crosses derived from green crosses derived from the constant of the blue constan

Determine the degree to which charge symmetry is violated in EM form factors by

Combining chiral perturbation theory fits to isospin-averaged hyperon FFs

Input $\,m_u/m_d$ from experiment (or lattice)

the *L*3 \rightarrow 323 \rightarrow 323 \rightarrow 333 \rightarrow 333 \rightarrow 333 \rightarrow 333 \rightarrow 343 \rightarrow 343 \rightarrow 343 \rightarrow 343 \rightarrow 343 \rightarrow

Charge Symmetry Violation

Figure 2012 - Charge Symmetry Violation electric (b) isovector nucleon form factors to infinite volume and the physical pseudoscalar masses are shown compared with the

experimental results (data red band). The blue circles and green crosses denote red band from green crosses denote results derived from green crosses derived from green crosses derived from the constant of the blue constan

Determine the degree to which charge symmetry is violated in EM form factors by

Combining chiral perturbation theory fits to isospin-averaged hyperon FFs

Input $\,m_u/m_d$ from experiment (or lattice)

the *L*3 \rightarrow 323 \rightarrow 323 \rightarrow 333 \rightarrow 333 \rightarrow 333 \rightarrow 333 \rightarrow 343 \rightarrow 343 \rightarrow 343 \rightarrow 343 \rightarrow 343 \rightarrow

Figure 2: Coronal determinations as relevant to experimental determinations of nucleon strangences. The blue circles and green crosses and green coronal determinations and green crosses. The blue circles and green crosses **Charge symmetry satisfied to better than 0.2%**

Spin of the Proton

[See also plenary by K.-F. Liu]

Spin of the Proton

1

2

How is the spin of the proton distributed between its constituents?

X. Ji (1997):

$$
=\sum_q J_q(\mu^2)+J_g(\mu^2) \qquad J_q=\frac{1}{2}\Delta\Sigma_q+L_q
$$

Express in terms of moments of Generalised Parton Distributions *q*

 $J_{q/g} =$ 1 2 $[A_{20}^{q/g}(\Delta^2=0) + B_{20}^{q/g}(\Delta^2=0)]$

which are obtained from the matrix elements of the energy momentum tensor

$$
\langle P'|T^{\mu\nu}|P\rangle = \overline{U}(P') \Big\{ \gamma^{\mu} \overline{P}^{\nu} A_{20}(\Delta^2) + \frac{i\sigma^{\mu\rho} \Delta_{\rho} \overline{P}^{\nu}}{2m_N} B_{20}(\Delta^2) + \frac{\Delta^{\mu} \Delta^{\nu}}{m_N} C_{20}(\Delta^2) \Big\} U(P)
$$

\n
$$
1 = \sum_{q} A_{20}^{q}(0) + A_{20}^{g}(0)
$$

\n
$$
= \sum_{q} \langle x \rangle_q + \langle x \rangle_g
$$

\n
$$
0 = \sum_{q} B_{20}^{q}(0) + B_{20}^{g}(0)
$$

Origin of the Nucleon Spin **Quark Angular Momentum and Spin (Connected) (Review by S.Syritsyn, Lattice 2013)**

Spin of the Proton $\Delta s =$ \int_0^1 0 $dx \left[\Delta s(x) + \Delta \bar{s}(x) \right]$

 Δs is a purely quark-line disconnected contribution

A challenge on the lattice

Standard procedure: Use stochastic (random noise) sources

PROOD

e.g. PRL108, 222001 (arXiv:1112.3354) $\overline{\text{MS}}$ *µ* = $\sqrt{7.4}$ GeV $m_{\pi} = 285 \text{ MeV}$
 $\Delta s = -0.020(10)(4)$ Spin of the Proton $\Delta s =$ \int_0^1 0 $dx \left[\Delta s(x) + \Delta \bar{s}(x) \right]$

 Δs is a purely quark-line disconnected contribution

A challenge on the lattice

Standard procedure: Use stochastic (random noise) sources

e.g. PRL108, 222001 (arXiv:1112.3354) $\overline{\text{MS}}$ *µ* = $\sqrt{7.4}$ GeV $m_{\pi} = 285 \text{ MeV}$
 $\Delta s = -0.020(10)(4)$

A new alternative: [A. Chambers et al. (CSSM/QCDSF) PRD90 (2014) 014510]

Apply the Feynman-Hellmann method to lattice Green's functions

$$
\frac{\partial E_H(\lambda)}{\partial \lambda} = \frac{1}{2E_H(\lambda)} \left\langle H \bigg| \frac{\partial S(\lambda)}{\partial \lambda} \bigg| H \right\rangle
$$

Spin of the Proton $\Delta s =$ \int_0^1 0 $dx \left[\Delta s(x) + \Delta \bar{s}(x) \right]$

 Δs is a purely quark-line disconnected contribution

A challenge on the lattice

Standard procedure: Use stochastic (random noise) sources

e.g. PRL108, 222001 (arXiv:1112.3354) $\overline{\text{MS}}$ *µ* = $\sqrt{7.4}$ GeV $m_{\pi} = 285 \text{ MeV}$
 $\Delta s = -0.020(10)(4)$

A new alternative: [A. Chambers et al. (CSSM/QCDSF) PRD90 (2014) 014510]

Apply the Feynman-Hellmann method to lattice Green's functions

$$
\frac{\partial E_H(\lambda)}{\partial \lambda} = \frac{1}{2E_H(\lambda)} \left\langle H \left| \frac{\partial S(\lambda)}{\partial \lambda} \right| H \right\rangle
$$

Also allows for full nonperturbative determination of singlet renormalisation constants

 $g_A = Z_A^{\rm NS} g_A^{\rm latt}$ $\Delta\Sigma=Z_A^{\mathrm{S}}\Delta\Sigma^{\mathrm{latt}}$ **[CSSM/QCDSF, arXiv:1410.3078] [Alternative method using AWI: K.-F. Liu]**

Disconnected Spin Contributions **Preliminary!**

Disconnected Spin Contributions **Disconnected Contributions M.Constantinou (Lattice 2014)**

Other Observables

Moments of Parton Distribution Functions $\left\langle x\right\rangle _{q,g}$

Moments of Generalised Parton Distribution Functions

 \mathbf{Sigma} $\sigma_{\pi N},\ \sigma_s$

Moments of TMDs

[M.Engelhardt et al. PRD 85 (2012) 094510, Lattice 2014]

Other hadrons $(\pi, \Sigma, \Lambda, \ldots)$

•Review: Ph. Hägler, 0912.5483

•Lattice review talks

●2013: S.Syritsyn 1403.4686

•2012: H.-W. Lin 1212.6849 ●2011: H. Wittig 1201.4774

Lattice hadron structure simulations now approaching the physical point

Lots of effort in understanding systematic errors (e.g. in gA)

Form factors are in good shape

Small strangeness form factors

Small charge symmetry violation

Excellent progress in decomposing nucleon spin

$$
\Delta s \sim -5\%
$$

$$
L_{\text{conn}}^{u+d} \sim 0
$$

$$
L_{\text{disc}}^{q}
$$
?

[Plenary by K.-F. Liu]