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}  Calculates the set of spin-orbital functions F_i, which can be used to: 
}  Evaluate equilibrium polarization and depolarizing resonances in electron 

rings with SR.  
}  Evaluate depolarization due to different diffusion mechanisms. 
}  Evaluate strength of the imperfection resonances, as well as the 

resonances produced by the spin-flippers, using response function 
technique. 

Algorithm description: “Spin response formalism in circular accelerators”, V. Ptitsyn, Yu.M. 
Shatunov, S. Mane, NIM, A608 (2009), p.225. 

 

}  Capability was added to the ASPIRRIN code to calculate the intrinsic 
spin resonance harmonics in an accelerator with an arbitrary 
configuration of the stable spin on the design orbit.  

}  Lately the capability to calculate first order resonance harmonics for 
resonances caused by betatron coupling has been developed. 
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-periodical right-handed system, convenient for analyzing the perturbation of spin motion 

solution, which satisfies: n0(⇥ + 2⌅) = n0(⇥), and l0,m0 are other two linear independent spin
solutions. Defining the complex spin solution k0 = l0 + im0, the one-turn periodicity of it is
expressed as : k0(⇥+2⌅) = exp�i2⇤⇥ k0(⇥), where ⇤ is the spin tune on the reference orbit. The
spin solutions n0,k0 and k0

⇥ are the eigen-solutions of the spin motion on the design orbit.
Using the spin eigen-solutions one can also define a periodic coordinate system more conve-

nient for the analysis of the spin motion than the laboratory system . New coordinate system
is defined by right-handed orthonormal triad (l,m,n0), and the corresponding complex vector
k = l + im, which is related with the spin eigen-solution by:

k = k0 · ei⇥� (2)

The vectors l,m and k are periodical on azimuth ⇥. In fact, since the spin tune ⇤ is defined up
to addition of an integer number, there is an infinite number of possible choices of the vectors
l,m, depending on the chosen spin tune. Since the components of vector n0 and k0 are found in
the laboratory system, the relation 2 provides the connection between the new periodic system
and laboratory one.

Considering the spin motion for particles moving o� the reference orbit, we are mostly
interested in a special spin solution, n, which is periodical both on the azimuth ⇥ and the
phases of the orbital motion:

n(Ji, ⇥, ⇧i) = n(Ji, ⇥ + 2⌅, ⇧i) = n(Ji, ⇥, ⇧i + 2⌅) (3)

where Ji are the orbital motion actions. The n presents the vector field built on the orbital
motion phase space and is often called also the invariant spin field. In this paper, the orbital
motion phases are two phases of the betatron motion only . The vector n, considered in
this paper, will include also the periodical in azimuth ⇥ spin solutions for a particle with the
momentum deviation as well as a for a particle moving on the distorted closed orbit. We would
like to point out once more, that the n0, as defined in this paper, is defined on the design
reference orbit only, and not on the arbitrary closed orbit.

The vector n with respect to the periodic coordinate system can be described using the
complex variable �:

n =
�

1� |�|2n0 + ⇥(�k⇥) =
�

1� |�|2n0 + ⇥(�)l + ⇤(�)m (4)

This definition takes into the account the fact that the preferable case for the spin motion in a
storage ring would be when the � is small, and thus, the invariant field does not deviate much
from n0 on the reference orbit.

The full equation of motion for � is written as:

d�

d⇥
= i (⇤ + w · n0) �� iw · k

�
1� |�|2 (5)

The solution of the equation 6 corresponding to the n has to satisfy the periodicity conditions
of n, and, therefore, its Fourier decomposition can not include harmonics oscillating with the
spin tune.

The term w · n0 in the equation ?? provides the correction to the spin tune and, also, creates,
so-called modulation resonances, which are the high-order resonances. One should note that
If the modulation e�ect is su⇥ciently large it may a�ect considerably the strength of a parent
first-order resonance. But, in this paper we are not going to discuss the modulation e�ect, and
will simply neglect the term w · n0.
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Definition of (first-order) spin resonance harmonics for the case of arbitrary configuration of 
stable spin direction on the design orbit: 

∗

Nermeen Khalil† , Stony Brook University, Stony Brook, NY 11794, U.S.A.
V. Ptitsyn, Brookhaven National Laboratory, Upton, NY 11973, U.S.A.

Abstract

The polarization of proton beam during the acceleration
process in a particle accelerator is affected by the existence
of spin resonances. Coupling spin resonances can be ex-
cited in the presence of the betatron coupling introduced
by rolled quadrupoles and solenoids. A corresponding al-
gorithm has been developed and added to the ASPIRRIN
code to include the calculation of the first-order intrinsic
resonance harmonics in the case of arbitrary strong beta-
tron coupling and in the presence of Siberian Snakes and
spin rotators.The analysis of the coupling resonance har-
monics excited in RHIC collider is presented.

INTRODUCTION

Accelerating high energy polarized proton beams in a
circular accelerator is complicated with the presence of de-
polarizing resonances. With the application of the various
kind of spin rotating devices (like Snakes and spin rota-
tors) the stable spin axis on the design closed orbit may
deviate from the vertical, and an algorithm should be re-
alized which would calculate the spin resonance harmon-
ics with this complex configuration of the magnetic field
on the design orbit. Main features of this algorithm for
calculating the spin resonance strength were presented in
[1]. In the work presented in this paper the algorithm has
been extended to include the calculation of horizontal and
vertical intrinsic spin resonance amplitudes for the case of
strong betatron coupling, caused by rotated quadrupoles
and solenoidal fields. We consider, as an example, the
betatron coupling in RHIC accelerator which is originated
mostly due to rolls of quadrupoles at the RHIC interaction
regions and compensated using the local skew quadrupole
correctors. In order to calculate the undesired coupling ef-
fects on the spin resonance strength an algorithm has been
modified in ASPIRRIN [2] code to include the horizontal
and vertical intrinsic spin resonance amplitude calculation
for arbitrary rotated quadrupole in presence of the Siberian
Snakes. In RHIC two Siberian Snakes are installed in each
of the two RHIC rings [3].

ALGORITHM DESCRIPTION

In order to describe the spin motion which is initiated
by the arbitrary rotated quadrupole , we would need to in-
troduce the calculation of the spin perturbation in general.
We consider the spin perturbation due to betatron oscilla-
tions as the linear form in the orbit variables wj = TiqXq .
The orbital coordinates and momenta of a particle will be

∗Work supported by Brookhaven Science Associates, LLC under Con-
tract No. DE-AC02-98CH10886 with the U.S. DOE

† nermeen.khalil@stonybrook.edu

defined as XT = (x, px, y, py), where x and y are the hori-
zontal and vertical coordinates of a particle, and px and py
are their conjugate momenta. The linear orbital motion can
be defined as Xq = FqrAr where Fqr is the matrix com-
piled from the complex eigenvectors of the orbital motion,
and Ar is the vector of the betatron amplitudes.

Here we are considering the spin perturbation theory in
the coordinate system (l,m,n0), where n0 is the stable
spin solution on the design orbit. In this coordinate system
a spin vector on the design orbit rotates with the constant
spin precession tune ν around n0. The vector k = l+im is
related with the spin eigenvector k0 by k = k0 ·eiνθ, where
θ describes the accelerator azimuth. In Eq. 1 the first-order
spin resonances are defined as the coefficients of Fourier
decomposition of the spin perturbation term

w · k =
∑

r,p

ϵrpe
i(p+Qr)θ =

∑

r,p

Arṽrpe
i(p+Qr)θ (1)

where p are integer numbers and Qr present components
of the orbital betatron tune vector (QI ,−QI , QII ,−QII).
QI and QII are tunes of two betatron oscillation modes. In
order to calculate ṽrp in the program the integral over one
turn is taken doing element-by-element integration [1].

ṽrp =
1

2π

∫ 2π

0
eiδrpθ

∑

j,q

TjqFqrk0jdθ (2)

where δrp = ν − (p + Qr) describes detuning of the spin
tune from a resonance tune.

In order to obtain ṽrp for rotated quadrupole we start
with considering the following equations of motion of par-
ticle in arbitrary rotated quadrupole:

x
′′

= −gcx− κcy y
′′

= gcy − κcx (3)

where gc = g · cos(2φ) and κc = g · sin(2φ) are defined
by the quadrupole rotation angle φ and the quadrupole field
gradient g.

From (3) we can get the expressions for the orbital mo-
tion eigenvectors which will be used later in the paper :

F3r = −AF
′′

3r +BF
′′

1r F1r = AF
′′

1r +BF
′′

3r (4)

Here:

A = −cos(2φ)/g B = −sin(2φ)/g (5)

The components of horizontal and vertical components
of the spin perturbations in a quadrupole are given by:

wx = (1 + ν0)y
′′

wy = −(1 + ν0)x
′′

(6)

COUPLING SPIN RESONANCES WITH SIBERIAN SNAKES
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Components of spin perturbation vector w in linear approximation: 

wx = (1+ν0 ) ""y + 1+G( )Ks "x

ws = (1+G)( "Kyy+ΔKs −Ks
Δp
p )− (ν0 −G)Ky "y

wy = −(1+ν0 ) ""x + ν0 + G
γ( )Ky

Δp
p + 1+G( )Ks "y

Orbital tune vector: 
Qr = (Qx,-Qx, Qy, -Qy) 

General presentation of orbital motion: 

Column matrix of 
 orbital eigenvectors 

Vector of orbital 
amplitudes 

Xi = fikAk + Xi
co +Di

Δp
p

Complex vector k is defined by the spin motion on the design 
closed orbit (Snakes, spin rotators, partial snake, Figure-8) 

  
!vrp = !vrp

j

j
∑

Calculated as the sum over lattice elements: 



Rolled quadrupole term in the resonance 
harmonic 
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where ν0 = Gγ, with magnetic moment anomaly G and
relativistic factor γ. From (1) and (6) the contribution to
a spin resonance harmonic produced by a betatron mode
oscillating with the tune Qr from a quadrupole can be for-
mulated as the following:

ṽquadrp = (1 + ν0)(k0xI3 − k0yI1) (7)

where I1 and I2 are the integrals defined as

I1 =

∫ θ2

θ1

F
′′

1re
iδrpθdθ (8)

I3 =

∫ θ2

θ1

F
′′

3re
iδrpθdθ (9)

and θ1 and θ2 correspond to the entrance and the exit of the
quadrupole.

To find the integrals (8) and(9) one can apply twice the
integration by parts and the expressions (4) to get the set of
linear equations for I1 and I3. Resolving the equations one
gets the solution in the matrix form:

(

I1
I3

)

= M−1

(

C1

C3

)

(10)

where M, C1 and C3 are expressed as

M =

(

1 +Aδ2rp Bδ2rp
Bδ2rp 1−Aδ2rp

)

(11)

C3 =
[

(F
′

3r − iδrpF3r)e
iδrpθ

]θ2

θ1
(12)

C1 =
[

(F
′

1r − iδrpF1r)e
iδrpθ

]θ2

θ1
(13)

Then the final formula which defines the contribution
from an individual rotated quadrupole to the spin resonance
harmonic is:

ṽquadrp = Y [k0x(δ
2
rp sin(2φ)C1 + (g − δ2rp cos(2φ))C3)

− k0y((g + δ2rp cos(2φ))C1 + δ2rp sin(2φ)C3)] (14)

where
Y = g(1 + ν0)/(g

2
− δ4rp) (15)

Summing these contributions from all quadrupoles gives us
the full spin resonance harmonic defined by r and p.

Using similar technique the spin resonance harmonics
contribution from a solenoid was derived as:

ṽsolrp =
(G− ν0)Ks

δ2 − (GKs)2
(−iδrp[e

iδrpθ((F2r+
1

2
KsF3r)k0x

+(F4r−
1

2
KsF1r)k0y)]

θ2
θ1
+GKs[e

iδrpθ((F2r+
1

2
KsF3r)k0y

− (F4r −
1

2
KsF1r)k0x)]

θ2
θ1
)

+
(1 + ν0)Ks

2

[

eiδrpθ(F1rk0x + F3rk0y)
]θ2

θ1
(16)

where Ks is the normalized field of the solenoid and the
last term describes the contribution from the solenoid ends.

CALCULATIONS FOR THE BETATRON
COUPLING AT RHIC

We would show some tests which have been done by
ASPIRRIN after modifying it with the new algorithm.
The main motivation for our calculation was to test the
code ability of calculating the resonance strength amplitude
in the general case for the betatron oscillation coupling.
The calculations were done for the RHIC lattice with two
Siberian Snakes, which had uncoupled tunes Qx = 27.685,
Qy = 29.673 with betatron amplitudes of 10µm · rad. in
both planes.

The spin tune in RHIC with the Siberian Snakes is equal
to 0.5. because of that in all plots in this section we show
the result for resonance harmonics which are closest to 0.5
value (that is with the resonance tunes in [0 − 1] range).
Moreover, we add together the amplitudes of the two spin
resonance harmonics, one below and other above 0.5, cor-
responding to the same betatron tune (QI or QII ). That
gives the resonance amplitude of the linear resonance har-
monic, which is more natural when considering an acceler-
ator with the Siberian Snake [1].

First we started by varying the field strength of different
IR skew quadrupoles correctors, which are used to compen-
sate for the coupling caused by the rolled quadrupoles, and
observing how the spin resonance harmonics depend on
the betatron coupling, which is characterized by minimum
betatron tune split ∆Qmin. In figure 1 a typical behav-
ior of the vertical and horizontal resonance harmonics are
shown by varying the gradient strength of skew-quadrupole
(SQ06C2B), the horizontal resonance amplitude would in-
crease non linearly while the vertical amplitude would be-
have the opposite.
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Figure 1: Dependence of the vertical and horizontal reso-
nance harmonic amplitudes on the coupling strength when
varying a skew quadrupole corrector. Gγ = 422.3.

Figure 2 demonstrates another typical feature of the res-
onance harmonic dependence observed during the skew
quadrupole variation studies. While the vertical and hori-
zontal harmonics changes the sum of their squares remains
approximately constant: ṽ2hor + ṽ2ver ≈ const. This in-
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C1 = !f1r − iδrp f1r( )eiδrpθ%
&

'
(θ1

θ2

C3 = !f3r − iδrp f3r( )eiδrpθ%
&

'
(θ1

θ2

For a quadrupole with gradient g and roll angle φ : 

δrp =ν sp − (p+Qr )



Example with a quadrupole roll. 
Intrinsic resonance modifications. 
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RHIC IR quad Q1O6 2mrad roll error ΔQmin = 0.017 

Vertical resonance Horizontal resonance 



Example with skew quadrupole correctors. 
Intrinsic resonance modifications. 
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Random gradient values of RHIC 12 skew quadrupole correctors in RHIC interaction 
region. Integrated gradient range: 0-3, 10-3 1/m . 

ΔQmin = 0.031 

Vertical resonance Horizontal resonance 

Normalized betatron amplitudes: Ax = Ay = 10 mm*mrad 
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Quad gradient, m-2 

Intrinsic resonance harmonic amplitude  
modification law 

A skew quadrupole strength variation 

Vertical 

Horizontal 

Gγ = 422.3 
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Horizontal resonance amplitude with present 
RHIC IR skew errors and correction 

Skew quad corrector 
strength, 10-3 1/m 

Triplet quad roll errors, mrad 

dicates a rotational type transformation between the hori-
zontal and vertical resonance harmonics when the betatron
coupling is introduced.
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Figure 2: Conservation of the sum of squares of the hor-
izontal and vertical resonance harmonic amplitudes when
varying a skew quadrupole corrector(SQ08C2B). Gγ =
422.3.

Next, we considered actual coupling errors present in
RHIC, where strong sources of the the betatron coupling
are due to the rolls of the IR quadrupoles. These quad rolls
are well known from the beam-based and magnetic mea-
surements. Thus, we applied the known rolls and well as
local skew quadrupole corrector strengths used at RHIC
operation [4]. Figure 3 shows the calculated values of
the vertical resonance amplitudes versus Gγ in a region
of strong resonances in RHIC. The figure shows some re-
duction of the values of vertical harmonics amplitude after
applying the quad rolls and skew quad correction.
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Figure 3: Calculated vertical spin resonance harmonics
with and without the actual RHIC IR quadrupole rolls and
local IR skew corrections.

Figure 4 shows the calculated values of the the horizon-
tal resonance amplitude versus Gγ and it is observed that
the horizontal resonance amplitudes are excited up to 0.15
when the actual quadrupole rolls and skew quad corrector
strengths are used (in this case δQmin ≈ 0.01). After that
we used optimized values for certain local skew quadrupole

gradients, which reduced the δQmin coupling parameter to
0.001. The horizontal resonance harmonics are clearly re-
duced in this case. The plot also shows that the horizontal
resonance amplitudes are suppressed to zero when the skew
quadrupoles are turned off and the quadrupole rolls are 0.
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Figure 4: Calculated horizontal spin resonance harmonics
with and without the actual RHIC IR quadrupole rolls and
local IR skew corrections. The result for optimized correc-
tions is also shown.

SUMMARY

The calculation of spin resonance harmonics with cou-
pled transverse betatron motion was implemented in the
ASPIRRIN code. We noticed a rotation-type transforma-
tion of the resonance strength of vertical and horizontal
harmonics when introducing the betatron coupling. The
local coupling correction for actual values of quad rolls
and IR skew quad correctors at 6 Interaction regions in
RHIC results in exciting the horizontal resonance strength
up to 0.15 at Gγ of value of 422.3. Optimizing the skew
quadrupoles arrangement for better compensation of the lo-
cal coupling helps to reduce the horizontal spin resonance
amplitudes even before applying the global coupling cor-
rection.
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For a solenoid magnet with normalized field Ks=Hs/<By>: 

 

!vrp
sol =

G −ν0
δrp
2 − GKs( )2

(−iδrp e
iδrpθ f2r + 1

2 Ks f3r( )k0x + f4 r − 1
2 Ks f1r( )k0y( )%

&
'
(θ1

θ2
+

+GKs e
iδrpθ f2r + 1

2 Ks f3r( )k0y − f4 r − 1
2 Ks f1r( )k0x( )%

&
'
(θ1

θ2 )+

+
1+ν0( )Ks

2
eiδrpθ f1rk0x + f3rk0y( )%
&

'
(θ1

θ2

Contribution from the solenoid ends 



Summary 

Ø  The ASPIRRIN contains now the full 4-D calculation of the first –order resonance 

harmonics caused by the betatron coupling, including effects from rolled quads, 

skew quadrupoles and solenoid magnets. 

Ø  The conversation law for the  sum of squares of the horizontal and vertical 

resonance harmonic amplitudes was observed. 

Ø  Further work plan: 

•  Horizontal resonances in AGS: interplay of partial snake and skew correctors 

•  High-order resonance harmonics calculation following perturbation theory. 

     (S.R. Mane, NIM A 680, p.35, 2012) 
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Example of horizontal resonance harmonics 

The 21th International Spin Physics Symposium 

Two examples shown  for the non-vertical n0: 
1) IP6 spin rotators turned on (with  energy independent settings) 
2) Second case: 5o spin rotation angle error of  in 9 o’clock snake 

Horizontal resonance harmonics can 
appear if: 
• vector n0 on closed orbit deviates from 
the vertical (due to imperfection 
resonances) 
• betatron coupling 

10/22/2012 

No secondary linear harmonics: wxl1s=wxl2s=0 
The resonance harmonics value ~ Gγ	
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