Calculation of coupling spin resonance harmonics with Snakes

Nermeen Khalil
Stony Brook University
Vadim Ptitsyn
Brookhaven National Laboratory

ASPIRRIN code features

- Calculates the set of spin-orbital functions F_i, which can be used to:
- Evaluate equilibrium polarization and depolarizing resonances in electron rings with SR.
- Evaluate depolarization due to different diffusion mechanisms.
- Evaluate strength of the imperfection resonances, as well as the resonances produced by the spin-flippers, using response function technique.
Algorithm description:"Spin response formalism in circular accelerators", V. Ptitsyn,Yu.M.
Shatunov, S. Mane, NIM, A608 (2009), p. 225.
- Capability was added to the ASPIRRIN code to calculate the intrinsic spin resonance harmonics in an accelerator with an arbitrary configuration of the stable spin on the design orbit.
- Lately the capability to calculate first order resonance harmonics for resonances caused by betatron coupling has been developed.

General definitions

$$
\vec{S}^{\prime}=\left(\vec{W}_{0}+\vec{w}\right) \times \vec{S}
$$

\vec{n}_{0}-Periodical spin solution on the reference orbit
v-Spin tune on the reference orbit
$\vec{n}_{0}, \vec{l}_{0}, \vec{m}_{0} \quad$ - spin related right-handed system formed by the spin solutions on the reference orbit $\left(\mathbf{W}_{\mathbf{0}}\right)$;
$\vec{k}_{0}=\vec{l}_{0}+i \vec{m}_{0}$
$\vec{n}_{0}, \vec{l}, \vec{m} \quad$-periodical right-handed system, convenient for analyzing the perturbation of spin motion
$\vec{k}=\vec{l}+i \vec{m} ; \quad \vec{k}=\vec{k}_{0} e^{i v \theta}$

$$
\mathbf{n}=\sqrt{1-|\alpha|^{2}} \mathbf{n}_{\mathbf{0}}+\Re\left(\alpha \mathbf{k}^{*}\right)
$$

Spin presentation, using complex variable α :

$$
\frac{d \alpha}{d \theta}=i\left(\nu+\mathbf{w} \cdot \mathbf{n}_{\mathbf{0}}\right) \alpha-i \mathbf{w} \cdot \mathbf{k} \sqrt{1-|\alpha|^{2}}
$$

Spin resonance harmonics

Definition of (first-order) spin resonance harmonics for the case of arbitrary configuration of stable spin direction on the design orbit:

$$
\mathbf{w} \cdot \mathbf{k}=\sum_{r, p} \epsilon_{r p} e^{i\left(p+Q_{r}\right) \theta}=\sum_{r, p} A_{r} \tilde{v}_{r p} \xlongequal{e^{i\left(p+Q_{r}\right) \theta}} \quad \begin{gathered}
\text { Calculated as the sum over lattice elements: }
\end{gathered} \tilde{\boldsymbol{v}}_{r p}=\sum_{j} \tilde{\boldsymbol{v}}_{r p}^{j}
$$

Complex vector \mathbf{k} is defined by the spin motion on the design closed orbit (Snakes, spin rotators, partial snake, Figure-8)

> Orbital tune vector:

$$
Q_{r}=\left(Q_{x}-Q_{x}, Q_{y},-Q_{y}\right)
$$

Components of spin perturbation vector \mathbf{w} in linear approximation:

$$
\begin{aligned}
& w_{x}=\left(1+v_{0}\right) y^{\prime \prime}+(1+G) K_{s} x^{\prime} \\
& w_{s}=(1+G)\left(K_{y}^{\prime} y+\Delta K_{s}-K_{s} \frac{\Delta p}{p}\right)-\left(v_{0}-G\right) K_{y} y^{\prime} \\
& w_{y}=-\left(1+v_{0}\right) x^{\prime \prime}+\left(v_{0}+\frac{G}{\gamma}\right) K_{y} \frac{\Delta p}{p}+(1+G) K_{s} y^{\prime}
\end{aligned}
$$

General presentation of orbital motion:

$$
X_{i}=f_{i k} A_{k}+X_{i}^{c o}+D_{i} \frac{\Delta p}{p}
$$

Column matrix of Vector of orbital orbital eigenvectors
amplitudes

Rolled quadrupole term in the resonance harmonic

For a quadrupole with gradient g and roll angle ϕ :

$$
\begin{aligned}
& \tilde{v}_{r p}^{q u a d}=Y\left[k_{0 x}\left(\delta_{r p}^{2} \sin (2 \phi) C_{1}+\left(g-\delta_{r p}^{2} \cos (2 \phi)\right) C_{3}\right)\right. \\
& \left.\quad-k_{0 y}\left(\left(g+\delta_{r p}^{2} \cos (2 \phi)\right) C_{1}+\delta_{r p}^{2} \sin (2 \phi) C_{3}\right)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& Y=g\left(1+\nu_{0}\right) /\left(g^{2}-\delta_{r p}^{4}\right) \\
& C_{1}=\left[\left(f_{1 r}^{\prime}-i \delta_{r p} f_{1 r}\right) e^{i \delta_{p \theta} \theta}\right]_{\theta_{1}}^{\theta_{2}} \\
& C_{3}=\left[\left(f_{3 r}^{\prime}-i \delta_{r p} f_{3 r}\right) e^{i \delta_{r p} \theta}\right]_{\theta_{1}}^{\theta_{2}}
\end{aligned}
$$

Example with a quadrupole roll. Intrinsic resonance modifications.

Horizontal resonance

RHIC IR quad Q1O6 2mrad roll error

$$
\Delta Q_{\min }=0.017
$$

Example with skew quadrupole correctors. Intrinsic resonance modifications.

Random gradient values of RHIC 12 skew quadrupole correctors in RHIC interaction region. Integrated gradient range: $\mathbf{0 - 3 , 1 0 ^ { - 3 }} 1 / \mathrm{m}$.

Horizontal resonance

Normalized betatron amplitudes: $A_{\mathrm{x}}=A_{\mathrm{y}}=10 \mathrm{~mm}^{*} \mathrm{mrad}$
$\Delta Q_{\text {min }}=0.031$

Intrinsic resonance harmonic amplitude modification law

Triplet quad roll errors, mrad Horizontal resonance amplitude with present RHIC IR skew errors and correction

Sector	Triplet	Blue Ring
5	Q1	1.35
	Q2	1.33
	Q3	1.37
6	Q1	1.59
	Q2	-1.63
	Q3	-3.69
7	Q1	-0.89
	Q2	1.23
	Q3	-1.32
8	Q1	4.67
	Q2	-2.10
	Q3	0.17
1	Q1	4.72
	Q2	2.40
	Q3	1.38
2	Q1	1.26
	Q2	3.21
	Q3	-0.87

Skew quad corrector strength, $\mathbf{1 0}$ -3 $\mathbf{1} / \mathbf{m}$	
bi5qs3	0
bo6qs3	0.1
bo7qs3	0.9
bi8qs3	-1.4
bi9qs3	-0.35
bo10qs3	-0.65
bo11qs3	-0.5
bi12qs3	0.32
bi1qs3	0.2
bo2qs3	-1.2
bo3qs3	-0.32
bi4qs3	-0.32

Solenoid magnet term in the resonance harmonic

For a solenoid magnet with normalized field $\left.K_{s}=H_{s} /<B_{y}\right\rangle$:

$$
\begin{aligned}
\tilde{v}_{r p}^{s o l}= & \frac{G-v_{0}}{\delta_{r p}^{2}-\left(G K_{s}\right)^{2}}\left(-i \delta_{r p}\left[e^{i \delta_{r p}^{\theta}}\left(\left(f_{2 r}+\frac{1}{2} K_{s} f_{3 r}\right) k_{0 x}+\left(f_{4 r}-\frac{1}{2} K_{s} f_{1 r}\right) k_{0 y}\right)\right]_{\theta_{1}}^{\theta_{2}}+\right. \\
& \left.+G K_{s}\left[e^{i \delta_{r_{p} \theta}}\left(\left(f_{2 r}+\frac{1}{2} K_{s} f_{3 r}\right) k_{0 y}-\left(f_{4 r}-\frac{1}{2} K_{s} f_{1 r}\right) k_{0 x}\right)\right]_{\theta_{1}}^{\theta_{2}}\right)+ \\
& +\frac{\left(1+v_{0}\right) K_{s}}{2}\left[e^{i \delta_{r p} \theta}\left(f_{1 r} k_{0 x}+f_{3 r} k_{0 y}\right)\right]_{\theta_{1}}^{\theta_{2}}
\end{aligned}
$$

Contribution from the solenoid ends

Summary

> The ASPIRRIN contains now the full 4-D calculation of the first -order resonance harmonics caused by the betatron coupling, including effects from rolled quads, skew quadrupoles and solenoid magnets.
$>$ The conversation law for the sum of squares of the horizontal and vertical resonance harmonic amplitudes was observed.
$>$ Further work plan:

- Horizontal resonances in AGS: interplay of partial snake and skew correctors
- High-order resonance harmonics calculation following perturbation theory. (S.R. Mane, NIM A 680, p.35, 20I2)

Example of horizontal resonance harmonics

Horizontal resonance harmonics can appear if:
-vector n_{0} on closed orbit deviates from the vertical (due to imperfection resonances)
-betatron coupling

No secondary linear harmonics: $\mathrm{w}_{\mathrm{xl1s}}=\mathrm{w}_{\mathrm{x} 12 \mathrm{~s}}=0$ The resonance harmonics value $\sim \mathrm{G} \gamma$

Two examples shown for the non-vertical n_{0} :

1) IP6 spin rotators turned on (with energy independent settings)
2) Second case: 5° spin rotation angle error of in 9 o'clock snake
