Calculation of coupling spin resonance harmonics with Snakes

Nermeen Khalil Stony Brook University

<u>Vadim Ptitsyn</u> Brookhaven National Laboratory

D

10/22/2012

ASPIRRIN code features

D

- Calculates the set of spin-orbital functions F_i, which can be used to:
 - Evaluate equilibrium polarization and depolarizing resonances in electron rings with SR.
 - Evaluate depolarization due to different diffusion mechanisms.
 - Evaluate strength of the imperfection resonances, as well as the resonances produced by the spin-flippers, using response function technique.
- Algorithm description: "Spin response formalism in circular accelerators", V. Ptitsyn, Yu.M. Shatunov, S. Mane, NIM, A608 (2009), p.225.
- Capability was added to the ASPIRRIN code to calculate the intrinsic spin resonance harmonics in an accelerator with an arbitrary configuration of the stable spin on the design orbit.
- Lately the capability to calculate first order resonance harmonics for resonances caused by betatron coupling has been developed.

General definitions

$$\vec{S}' = (\vec{W}_0 + \vec{w}) \times \vec{S}$$
On reference Precession perturbation
$$\vec{n}_0$$
 -Periodical spin solution on the reference orbit
$$\vec{n}_0, \vec{l}_0, \vec{m}_0$$
 - spin related right-handed system formed by the spin solutions on the reference orbit(\mathbf{W}_0);
$$\vec{k}_0 = \vec{l}_0 + i\vec{m}_0$$
-periodical right-handed system, convenient for analyzing the perturbation of spin motion

 $\vec{k} = \vec{l} + i\vec{m};$ $\vec{k} = \vec{k}_0 e^{iv\theta}$

$$\mathbf{n} = \sqrt{1 - |\alpha|^2} \mathbf{n_0} + \Re(\alpha \mathbf{k}^*)$$

Spin presentation, using complex variable α :

$$\frac{d\alpha}{d\theta} = i\left(\nu + \mathbf{w} \cdot \mathbf{n_0}\right)\alpha - i\mathbf{w} \cdot \mathbf{k}\sqrt{1 - |\alpha|^2}$$

The 21th International Spin Physics Symposium 10/22/2012

Spin resonance harmonics

Definition of (first-order) spin resonance harmonics for the case of arbitrary configuration of stable spin direction on the design orbit:

$$\mathbf{w} \cdot \mathbf{k} = \sum_{r,p} \epsilon_{rp} e^{i(p+Q_r)\theta} = \sum_{r,p} A_r \tilde{v}_{rp} e^{i(p+Q_r)\theta} \qquad \text{Calculated as the sum over lattice elements:} \\ \tilde{v}_{rp} = \sum_j \tilde{v}_{rp}^j$$

Complex vector \mathbf{k} is defined by the spin motion on the design closed orbit (Snakes, spin rotators, partial snake, Figure-8)

Orbital tune vector: $Q_r = (Q_{x}, -Q_{x}, Q_{y}, -Q_{y})$

General presentation of orbital motion:

$$w_{x} = (1 + v_{0})y'' + (1 + G)K_{s}x'$$

$$w_{s} = (1 + G)(K'_{y}y + \Delta K_{s} - K_{s}\frac{\Delta p}{p}) - (v_{0} - G)K_{y}y'$$

$$w_{y} = -(1 + v_{0})x'' + (v_{0} + \frac{G}{\gamma})K_{y}\frac{\Delta p}{p} + (1 + G)K_{s}y'$$

Components of spin perturbation vector w in linear approximation:

$$X_i = f_{ik}A_k + X_i^{co} + D_i \frac{\Delta p}{p}$$

Column matrix of orbital eigenvectors

Vector of orbital amplitudes

The 21th International Spin Physics Symposium 10/22/2012

Rolled quadrupole term in the resonance harmonic

For a quadrupole with gradient g and roll angle ϕ :

$$\tilde{v}_{rp}^{quad} = Y[k_{0x}(\delta_{rp}^2 \sin(2\phi)C_1 + (g - \delta_{rp}^2 \cos(2\phi))C_3) - k_{0y}((g + \delta_{rp}^2 \cos(2\phi))C_1 + \delta_{rp}^2 \sin(2\phi)C_3)]$$

where

$$Y = g(1 + \nu_0) / (g^2 - \delta_{rp}^4)$$

$$C_{1} = \left[\left(f_{1r}' - i\delta_{rp} f_{1r} \right) e^{i\delta_{rp}\theta} \right]_{\theta_{1}}^{\theta_{2}} \qquad \qquad \delta_{rp} = v_{sp} - (p + Q_{r})$$
$$C_{3} = \left[\left(f_{3r}' - i\delta_{rp} f_{3r} \right) e^{i\delta_{rp}\theta} \right]_{\theta_{1}}^{\theta_{2}}$$

Example with a quadrupole roll. Intrinsic resonance modifications.

RHIC IR quad Q106 2mrad roll error

D

 $\Delta Q_{min} = 0.017$

Example with skew quadrupole correctors. Intrinsic resonance modifications.

Random gradient values of RHIC 12 skew quadrupole correctors in RHIC interaction region. Integrated gradient range: 0-3, 10⁻³ 1/m.

Normalized betatron amplitudes: $A_x = A_y = 10 \text{ mm}^*\text{mrad}$

$$\Delta Q_{min} = 0.031$$

The 21th International Spin Physics Symposium

Intrinsic resonance harmonic amplitude modification law

9

H resonance amplitude	0.14	Zero Rolls zero grad SQ				
	0.12	Optimizied arrang of Skew quads				
	0.1					
	0.08					
	0.06					
	0.04					
	0.02					
	0 3	380 390 400 410 420 430 440 450 460 470 48 Gγ				

Horizontal resonance amplitude with present

Triplet quad roll errors, mrad

Sector	Triplet	Blue Ring
5	Q1	1.35
	Q2	1.33
	Q3	1.37
6	Q1	1.59
	Q2	-1.63
	Q3	-3.69
7	Q1	-0.89
	Q2	1.23
	Q3	-1.32
8	Q1	4.67
	Q2	-2.10
	Q3	0.17
1	Q1	4.72
	Q2	2.40
	Q3	1.38
2	Q1	1.26
	Q2	3.21
	Q3	-0.87

Skew quad corrector strength, 10 ⁻³ 1/m				
bi5qs3	0	•		
bo6qs3	0.1			
bo7qs3	0.9			
bi8qs3	-1.4			
bi9qs3	-0.35			
bo10qs3	-0.65			
bo11qs3	-0.5			
bi12qs3	0.32			
bi1qs3	0.2			
bo2qs3	-1.2			
bo3qs3	-0.32			
bi4qs3	-0.32			

10

Solenoid magnet term in the resonance harmonic

For a solenoid magnet with normalized field $K_s = H_s / < B_v >$:

$$\tilde{v}_{rp}^{sol} = \frac{G - v_0}{\delta_{rp}^2 - (GK_s)^2} (-i\delta_{rp} \left[e^{i\delta_{rp}\theta} \left(\left(f_{2r} + \frac{1}{2}K_s f_{3r} \right) k_{0x} + \left(f_{4r} - \frac{1}{2}K_s f_{1r} \right) k_{0y} \right) \right]_{\theta_1}^{\theta_2} + GK_s \left[e^{i\delta_{rp}\theta} \left(\left(f_{2r} + \frac{1}{2}K_s f_{3r} \right) k_{0y} - \left(f_{4r} - \frac{1}{2}K_s f_{1r} \right) k_{0x} \right) \right]_{\theta_1}^{\theta_2} \right) + \left(\frac{(1 + v_0)K_s}{2} \left[e^{i\delta_{rp}\theta} \left(f_{1r}k_{0x} + f_{3r}k_{0y} \right) \right]_{\theta_1}^{\theta_2} \right]_{\theta_1}^{\theta_2} \right)$$

Contribution from the solenoid ends

D

Summary

- The ASPIRRIN contains now the full 4-D calculation of the first –order resonance harmonics caused by the betatron coupling, including effects from rolled quads, skew quadrupoles and solenoid magnets.
- The conversation law for the sum of squares of the horizontal and vertical resonance harmonic amplitudes was observed.
- Further work plan:
 - Horizontal resonances in AGS: interplay of partial snake and skew correctors
 - High-order resonance harmonics calculation following perturbation theory. (S.R. Mane, NIM A 680, p.35, 2012)

Example of horizontal resonance harmonics

The resonance harmonics value $\sim G\gamma$

Two examples shown for the non-vertical n₀:
I) IP6 spin rotators turned on (with energy independent settings)
2) Second case: 5° spin rotation angle error of in 9 o'clock snake

The 21th International Spin Physics Symposium 10/22/2012