COLLINS MTASURHMIBNTS @ BELLE

Francesca Giordano for the BELLE Collaboration Spin 2014, Beijing, China, October 22nd, 2014

Fraomentation process or how do the hadrons get formed?

Cleanest way to access FF is $\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{q} \overline{\mathrm{q}}$

- Fragmentation function describes the process of hadronization of a parton
- Strictly related to quark confinement
- Universal: can be used to study the nucleon structure when combined with SIDIS and hadronic reactions data

$$
\left.A_{U T}^{h}=\frac{\sigma^{\uparrow \pi}-\sigma^{\text {个1 }}}{\sigma^{\Uparrow 1}+\sigma^{\text {®W }}}\right) \propto H_{1 q}^{\perp h}
$$

Collins Fraomentation

Collins mechanism: correlation between the parton transverse spin and the direction of final hadron

Collins Fraomentation

Collins mechanism: correlation between the parton transverse spin and the direction of final hadron
strictly related to the outgoing
hadron tranverse momentum

TMD!

Collins Frasmentation

Collins mechanism: correlation between the parton transverse spin and the direction of final hadron
strictly related to the outgoing hadron tranverse momentum

TMD!

Chiral odd!

$$
X \otimes H_{i}^{+}
$$

Collins Fraomentation

In e+e-reaction, there is no fixed transverse axis to define azimuthal angles to, and even if there were one the net quark polarization would be 0

Collins Fraomentation

Back-to-Back jets

In e+e-reaction, there is no fixed transverse axis to define azimuthal angles to, and even if there were one the net quark polarization would be 0

But if we look at the whole event, even though the q and \bar{q} spin directions are unknown, there is a known correlation between them

$$
e^{+} e^{-} \rightarrow q \bar{q} \rightarrow h_{1} h_{2} X
$$

$$
h=\pi, K
$$

Reference frames

$$
z \equiv \frac{E_{h}}{E_{q}} \quad e^{+} e^{-} \rightarrow q \bar{q} \rightarrow h_{1} h_{2} X \quad \quad h=\pi, K
$$

$\phi_{1}+\phi_{2}$ method:
hadron azimuthal angles with respect to the $q \bar{q}$ axis proxy
ϕ_{0} method:
hadron 1 azimuthal angle with respect to hadron 2

$$
\sigma \sim \mathcal{M}_{12}\left(1+\frac{\sin ^{2} \theta_{T}}{1+\cos ^{2} \theta_{T}} \cos \left(\phi_{1}+\phi_{2}\right) \frac{H_{1}^{\perp[1]}\left(z_{1}\right) \bar{H}_{1}^{\perp[1]}\left(z_{2}\right)}{D_{1}^{[0]}\left(z_{1}\right) \bar{D}_{1}^{[0]}\left(z_{2}\right)}\right) \quad \sigma \sim \mathcal{M}_{0}\left(1+\frac{\sin ^{2} \theta_{2}}{1+\cos ^{2} \theta_{2}} \cos \left(2 \phi_{0}\right) \mathcal{F}\left[\frac{H_{1}^{\perp}\left(z_{1}\right) \bar{H}_{1}^{\perp}\left(z_{2}\right)}{D_{1}^{\perp}\left(z_{1}\right) \bar{D}_{1}^{\perp}\left(z_{2}\right)}\right]\right)
$$

$$
F^{[n]}\left(z_{i}\right) \equiv \int d\left|k_{T}\right|^{2}\left[\frac{\left|k_{T}\right|}{M_{i}}\right]^{[n]} F\left(z_{i},\left|k_{T}\right|^{2}\right) \quad \mathcal{F}[X]=\sum_{q \bar{q}} \int\left[2 \hat{\mathbf{h}} \cdot \mathbf{k}_{\mathbf{T} \mathbf{1}} \hat{\mathbf{h}} \cdot \mathbf{k}_{\mathbf{T} \mathbf{2}}-\mathbf{k}_{\mathbf{T} \mathbf{1}} \cdot \mathbf{k}_{\mathbf{T} \mathbf{2}}\right]
$$

$$
d^{2} \mathbf{k}_{\mathbf{T} \mathbf{1}} d^{2} \mathbf{k}_{\mathbf{T} \mathbf{2}} \delta^{2}\left(\mathbf{k}_{\mathbf{T} \mathbf{1}}+\mathbf{k}_{\mathbf{T} \mathbf{2}}-\mathbf{q}_{\mathbf{T}}\right) X
$$

Reference frames

$$
z \equiv \frac{E_{h}}{E_{q}} \quad e^{+} e^{-} \rightarrow q \bar{q} \rightarrow h_{1} h_{2} X \quad \quad h=\pi, K
$$

$\phi_{1}+\phi_{2}$ method:
hadron azimuthal angles with respect to the $q \bar{q}$ axis proxy

$$
\mathcal{R}_{12}=\frac{N_{12}\left(\phi_{1}+\phi_{2}\right)}{\left\langle N_{12}\right\rangle}
$$

ϕ_{0} method:
hadron 1 azimuthal angle with respect to hadron 2

$$
\mathcal{R}_{0}=\frac{N_{0}\left(\phi_{0}\right)}{\left\langle N_{0}\right\rangle}
$$

BALL® @ KAKB

KEKB:

Asymmetric e+e-collider
($3.5 / 8 \mathrm{GeV}$)

Belle spectrometer:
4π spectrometer optimized for
CP violation in B-meson decay

On resonance:
$\sqrt{s}=10.58 \mathrm{GeV}(\mathrm{e}+\mathrm{e}-\rightarrow \mathrm{Y}(4 \mathrm{~S}) \rightarrow \mathrm{B} \overline{\mathrm{B}})$
Off resonance
$\sqrt{s}=10.52 \mathrm{GeV}(e+e-\rightarrow q \bar{q} \quad(q=u, d, s, c))$
Total Luminosity collected:
$1000 \mathrm{fb}^{-1}!!!$

Good tracking $\Theta\left[1^{\circ} ; 150^{\circ}\right]$ and vertex resolution

Good PID: $\varepsilon(\pi) \geq 90 \%$
$\varepsilon(\mathrm{K}) \geq 85 \%$

Doulble-ratios

But! Acceptance and radiation

 effects also contribute to azimuthal asymmetries!
Double-ratios

But! Acceptance and radiation effects also contribute to azimuthal asymmetries!

Double-ratios

Double-ratios

To reduce such non-Collins effects:
divide the sample of hadron couples in unlike-sign and like-sign (or All-charges), and extract the asymmetries of the super ratios between these 2 samples:

Unlike-sign couples / Like-sign couples

$$
\mathcal{D}_{u l}^{h_{1} h_{2}}=\mathcal{R}^{U} / \mathcal{R}^{L}
$$

Unlike-sign couples / All charges

$$
\mathcal{D}_{u c}^{h_{1} h_{2}}=\mathcal{R}^{U} / \mathcal{R}^{C}
$$

Reference frames

$$
e^{+} e^{-} \rightarrow q \bar{q} \rightarrow h_{1} h_{2} X \quad \quad h=\pi, K
$$

$\phi_{1}+\phi_{2}$ method:
hadron azimuthal angles with respect
to the $q \bar{q}$ axis proxy
ϕ_{0} method:
hadron 1 azimuthal angle with respect
to hadron 2

$$
\mathcal{D}_{u l}^{h_{1} h_{2}}=\mathcal{R}^{U} / \mathcal{R}^{L}
$$

$\mathcal{B}_{12}\left(1+\mathcal{A}_{12} \cos \left(\phi_{1}+\phi_{2}\right)\right)$
Fitted by

$$
\mathcal{D}_{u c}^{h_{1} h_{2}}=\mathcal{R}^{U} / \mathcal{R}^{C}
$$

$$
\mathcal{B}_{0}\left(1+\mathcal{A}_{0} \cos \left(2 \phi_{0}\right)\right)
$$

Reference frames

$$
e^{+} e^{-} \rightarrow q \bar{q} \rightarrow h_{1} h_{2} X
$$

$$
h=\pi, K
$$

$\phi_{1}+\phi_{2}$ method:
hadron azimuthal angles with respect to the $q \bar{q}$ axis proxy

ϕ_{0} method:
hadron 1 azimuthal angle with respect
to hadron 2

$$
\begin{array}{ll}
A_{12}=\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \frac{H_{1}^{\perp[1]}\left(z_{1}\right) \bar{H}_{1}^{\perp[1]}\left(z_{2}\right)}{D_{1}^{[0]}\left(z_{1}\right) \bar{D}_{1}^{[0]}\left(z_{2}\right)} & A_{0}=\frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \mathcal{F}\left[\frac{H_{1}^{\perp}\left(z_{1}\right) \bar{H}_{1}^{\perp}\left(z_{2}\right)}{D_{1}^{\perp}\left(z_{1}\right) \bar{D}_{1}^{\perp}\left(z_{2}\right)}\right] \\
\mathcal{B}_{12}\left(1+\mathcal{A}_{12} \cos \left(\phi_{1}+\phi_{2}\right)\right) & \mathcal{B}_{0}\left(1+\mathcal{A}_{0} \cos \left(2 \phi_{0}\right)\right)
\end{array}
$$

Published results: $\pi \pi$

$\phi_{1}+\phi_{2}$ method

ϕ_{0} method

Collins amplitudes in SIDIS

Collins amplitudes in STIDIS

Collins amplitudes in STIDIS

More recently

Extraction of Collins asymmetries for $\pi \mathrm{K}$ and KK couples! soon follow...

PID correction

$$
i=\pi, K
$$

$N^{j, r a w}=P_{i j} N^{i}$

PID correction

$$
N^{j, r a w}=P_{i j} N^{i}
$$

Perfect PID $\Rightarrow j=i$

$$
j=e, \mu, \pi, K, p
$$

$$
P_{i j}=\left(\begin{array}{ccccc}
P_{e \rightarrow e} & P_{e \rightarrow \mu} & P_{e \rightarrow \pi} & P_{e \rightarrow K} & P_{e \rightarrow p} \\
P_{\mu \rightarrow e} & P_{\mu \rightarrow \mu} & P_{\mu \rightarrow \pi} & P_{\mu \rightarrow K} & P_{\mu \rightarrow p} \\
P_{\pi \rightarrow e} & P_{\pi \rightarrow \mu} & P_{\pi \rightarrow \pi} & P_{\pi \rightarrow K} & P_{\pi \rightarrow p} \\
P_{K \rightarrow e} & P_{K \rightarrow \mu} & P_{K \rightarrow \pi} & P_{K \rightarrow K} & P_{K \rightarrow p} \\
P_{p \rightarrow e} & P_{p \rightarrow m u} & P_{p \rightarrow \pi} & P_{p \rightarrow K} & P_{p \rightarrow p}
\end{array}\right)
$$

PID correction

$$
N^{j, r a w}=P_{i j} N^{i}
$$

Perfect PID $\Rightarrow j=i$

$$
j=e, \mu, \pi, K, p
$$

$P_{i j}=\left(\begin{array}{ccccc}P_{e \rightarrow e} & P_{e \rightarrow \mu} & P_{e \rightarrow \pi} & P_{e \rightarrow K} & P_{e \rightarrow p} \\ P_{\mu \rightarrow e} & P_{\mu \rightarrow \mu} & P_{\mu \rightarrow \pi} & P_{\mu \rightarrow K} & P_{\mu \rightarrow p} \\ P_{\pi \rightarrow e} & P_{\pi \rightarrow \mu} & P_{\pi \rightarrow \pi} & P_{\rightarrow \rightarrow K} & P_{\pi \rightarrow p} \\ P_{K \rightarrow e} & P_{K \rightarrow \mu} & P_{K \rightarrow \pi} & P_{K \rightarrow K} & P_{K \rightarrow p} \\ P_{p \rightarrow e} & P_{p \rightarrow m u} & P_{p \rightarrow \pi} & P_{p \rightarrow K} & P_{p \rightarrow p}\end{array}\right)$

$\mathbf{p}_{\mathrm{r}, \mathbf{k} \boldsymbol{\mathrm { s }}}$ from D* decay

$\mathbf{p}_{\pi, p>j}$ from Λ decay
$\mathbf{p}_{\mathbf{e}, \mu \rightarrow \mathbf{j}}$ from J / ψ decay

PID correction

Perfect PID $\Rightarrow j=i$

$$
P_{i j} \Leftrightarrow P_{i j}(p, \theta)
$$

$$
j=e, \mu, \pi, K, p
$$

$P_{i j}=\left(\begin{array}{ccccc}P_{e \rightarrow e} & P_{e \rightarrow \mu} & P_{e \rightarrow \pi} & P_{e \rightarrow K} & P_{e \rightarrow p} \\ P_{\mu \rightarrow e} & P_{\mu \rightarrow \mu} & P_{\mu \rightarrow \pi} & P_{\mu \rightarrow K} & P_{\mu \rightarrow p} \\ P_{\pi \rightarrow e} & P_{\pi \rightarrow \mu} & P_{\pi \rightarrow \pi} & P_{\pi \rightarrow K} & P_{\rightarrow \rightarrow p} \\ P_{K \rightarrow e} & P_{K \rightarrow \mu} & P_{K \rightarrow \pi} & P_{K \rightarrow K} & P_{K \rightarrow p} \\ P_{p \rightarrow e} & P_{p \rightarrow m u} & P_{p \rightarrow \pi} & P_{p \rightarrow K} & P_{p \rightarrow p}\end{array}\right) \xrightarrow{\boldsymbol{r}}$
$\mathbf{p}_{\boldsymbol{\pi}, \mathbf{k} \rightarrow \mathbf{j}}$ from D^{*} decay
$\mathbf{p}_{\pi, p \rightarrow \mathbf{j}}$ from Λ decay
$\mathbf{p}_{\mathbf{e}, \boldsymbol{\mu}>\mathbf{j}}$ from J / Ψ decay

uds-charm-bottom-tau contributions

uds-charm-bottom-tau contributions

Collins asymmmetries

ϕ_{0} asymmetries

But we must be careful! charm have different contributions for the different pairs
$\pi \pi=>$ non-zero asymmetries, increase with z_{1}, z_{2} and PTO
$\pi \mathrm{K}=>$ asymmetries compatible with zero

KK => non-zero asymmetries, increase with z_{1}, z_{2} and PTO
similar size of pion-pion

QCD
 test?

Summary \&e outlook

- ϕ_{0} asymmetries
- present similar features for $\pi \pi$ and KK couples
- very small/compatible with zero for $\pi \mathrm{K}$ couples
e for $\pi \pi$ and $\pi \mathrm{K}$ the $\sin ^{2} \boldsymbol{\theta} /\left(I+\cos ^{2} \boldsymbol{\theta}\right)$ dependence of asymmetries are not inconsistent with a linear dependence going to zero
- KK show a more convoluted $\sin ^{2} \boldsymbol{\theta} /\left(1+\cos ^{2} \boldsymbol{\theta}\right)$ dependence

Summary \&e outlook

- ϕ_{0} asymmetries
- present similar features for $\pi \pi$ and KK couples
- very small/compatible with zero for $\pi \mathrm{K}$ couples

Q for $\pi \pi$ and $\pi \mathrm{K}$ the $\sin ^{2} \boldsymbol{\theta} /\left(I+\cos ^{2} \boldsymbol{\theta}\right)$ dependence of asymmetries are not inconsistent with a linear dependence going to zero

- KK show a more convoluted $\sin ^{2} \boldsymbol{\theta} /\left(1+\cos ^{2} \boldsymbol{\theta}\right)$ dependence
- ϕ_{12} asymmetries with Thrust axis in progress
- study using jet algorithm instead of Thrust in progress

Summary \&e outlook

- ϕ_{0} asymmetries
- present similar features for $\pi \pi$ and KK couples
- very small/compatible with zero for $\pi \mathrm{K}$ couples

Q for $\pi \pi$ and $\pi \mathrm{K}$ the $\sin ^{2} \boldsymbol{\theta} /\left(I+\cos ^{2} \boldsymbol{\theta}\right)$ dependence of asymmetries are not inconsistent with a linear dependence going to zero

- KK show a more convoluted $\sin ^{2} \boldsymbol{\theta} /\left(1+\cos ^{2} \boldsymbol{\theta}\right)$ dependence
- ϕ_{12} asymmetries with Thrust axis in progress
- study using jet algorithm instead of Thrust in progress

Stay tuned!

Fragmentation contributions

$$
\begin{aligned}
& u, d \rightarrow \pi(u \bar{d}, \bar{u} d) \\
& D^{f a v}=D_{u}^{\pi^{+}}=D_{d}^{\pi^{-}}=D_{\bar{u}}^{\pi^{-}}=D_{\bar{d}}^{\pi^{+}} \\
& D^{d i s}=D_{u}^{\pi^{-}}=D_{d}^{\pi^{+}}=D_{\bar{u}}^{\pi^{+}}=D_{\bar{d}}^{\pi^{-}} \\
& s \rightarrow \pi(u \bar{d}, \bar{u} d) \\
& D_{s \rightarrow \pi}^{d i s}=D_{s}^{\pi^{+}}=D_{s}^{\pi^{-}}=D_{\bar{s}}^{\pi^{+}}=D_{\bar{s}^{\pi^{-}}} \\
& u, d \rightarrow K(u \bar{s}, \bar{u} s) \\
& D_{u, d \rightarrow K}^{d i s}=D_{u}^{K^{-}}=D_{\bar{u}}^{K^{+}}=D_{d}^{K^{+}}=D_{\bar{d}}^{K^{-}}=D_{d}^{K^{-}}=D_{\bar{d}}^{K^{+}} \\
& s \rightarrow K(u \bar{s}, \bar{u} s)
\end{aligned} \quad \begin{aligned}
& D_{s \rightarrow K}^{f a v}=D_{s}^{K^{-}}=D_{\bar{s}}^{K^{+}} \\
& D_{s \rightarrow K}^{d i s}=D_{s}^{K^{+}}=D_{\bar{s}}^{K^{-}}
\end{aligned}
$$

In the end we are left with 7 possible fragmentation functions:

$$
D^{f a v}, D^{d i s}, D_{s \rightarrow \pi}^{d i s}, D_{u \rightarrow K}^{f a v}, D_{u, d \rightarrow K}^{d i s}, D_{s \rightarrow K}^{f a v}, D_{s \rightarrow K}^{d i s}
$$

5

Fragmentation contributions

For pion-pion couples:

For pion-Kaon couples:

$$
D^{\frac{U_{\pi K}}{L_{\pi K}}} \propto 1+\cos 2 \phi_{0} \frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \times
$$

$$
\left(\frac{4 H_{1}^{f a v} H_{2 K}^{f a v}+H_{1 K}^{d i s}\left(5 H_{2}^{d i s}+H_{2}^{f a v}\right)+H_{2 K}^{d i s}\left(5 H_{1}^{d i s}+H_{1}^{f a v}\right)+4 H_{1 K}^{f a v} H_{2}^{f a v}+H_{1 s \rightarrow \pi}^{d i s}\left(H_{2 s \rightarrow K}^{d i s}+H_{2 s \rightarrow K}^{f a v}\right)+H_{2 s \rightarrow \pi}^{d i s}\left(H_{1 s \rightarrow K}^{f a v}+H_{1 s s \rightarrow K}^{d i s}\right)}{4 D_{1}^{f a v} D_{2 K}^{f a v}+D_{1 K}^{d i s}\left(5 D_{2}^{d i s}+D_{2}^{f a v}\right)+D_{2 K}^{d i s}\left(5 D_{1}^{d i s}+D_{1}^{f a v}\right)+4 D_{1 K}^{f a v} D_{2}^{f a v}+D_{1 s \rightarrow \pi}^{d i s}\left(D_{2 s \rightarrow K}^{d i s}+D_{2 s \rightarrow K}^{f a v}\right)+D_{2 s \rightarrow \pi}^{d i s}\left(D_{1 s \rightarrow K}^{\text {dav }}+D_{1 s \rightarrow K}^{d i s}\right)}\right.
$$

For Kaon-Kaon couples:

$$
\begin{aligned}
& D^{\frac{U_{K K}}{L_{K K}}} \propto 1+\cos 2 \phi_{0} \frac{\sin ^{2} \theta}{1+\cos ^{2} \theta}\left(\frac{4 H_{1 K}^{f a v} H_{2 K}^{f a v}+6 H_{1 K}^{d i s} H_{2 K}^{d i s}+H_{1 s \rightarrow K}^{d i s} H_{2 s \rightarrow K}^{d i s}+H_{1 s \rightarrow K}^{f a v} H_{2 s \rightarrow K}^{f a v}}{4 D_{1 K}^{f a v} D_{2 K}^{f a v}+6 D_{1 K}^{d i s} D_{2 K}^{d i s}+D_{1 s \rightarrow K}^{d i s} D_{2 s \rightarrow K}^{d i s}+D_{1 s \rightarrow K}^{f a v} D_{2 s \rightarrow K}^{\text {fav }}}\right. \\
& \left.-\frac{4 H_{1 K}^{f a v} H_{2 K}^{d i s}+4 H_{1 K}^{d i s} H_{2 K}^{f a v}+2 H_{1 K}^{d i s} H_{2 K}^{d i s}+H_{1 s \rightarrow K}^{d i s} H_{2 s \rightarrow K}^{f a v}+H_{1 s \rightarrow K}^{f a v} H_{2 s \rightarrow K}^{d i s}}{4 D_{1 K}^{f a v} D_{2 K}^{d i s}+4 D_{1 K}^{d i s} D_{2 K}^{\text {fav }}+2 D_{1 K}^{d i s} D_{2 K}^{\text {dis }}+D_{1 s \rightarrow K}^{d i s} D_{2 s \rightarrow K}^{\text {fav }}+D_{1 s \rightarrow K}^{f a v} D_{2 s \rightarrow K}^{d i s}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& D^{\frac{U_{\pi \pi}}{L_{\pi \pi}}} \propto 1+\cos 2 \phi_{0} \frac{\sin ^{2} \theta}{1+\cos ^{2} \theta}\left(\frac{5 H_{1}^{f a v} H_{2}^{f a v}+5 H_{1}^{d i s} H_{2}^{d i s}+2 H_{1 s \rightarrow \pi}^{d i s} H_{2 s \rightarrow \pi}^{d i s}}{5 D_{1}^{\text {fav }} D_{2}^{f a v}+5 D_{1}^{d i s} D_{2}^{d i s}+2 D_{1 s \rightarrow \pi}^{\text {dis }} D_{2 s \rightarrow \pi}^{\text {dis }}}\right. \\
& \left.-\frac{5 H_{1}^{f a v} H_{2}^{d i s}+5 H_{1}^{d i s} H_{2}^{f a v}+2 H_{1 s \rightarrow \pi}^{d i s} H_{2 s \rightarrow \pi}^{d i s}}{5 D_{1}^{f a v} D_{2}^{d i s}+5 D_{1}^{d i s} D_{2}^{f a v}+2 D_{1 s \rightarrow \pi}^{d i s} D_{2 s \rightarrow \pi}^{d i s}}\right)
\end{aligned}
$$

Fragmentation contributions

For pion-pion couples:

$$
\begin{gathered}
\nu^{L_{\pi}} \bar{\pi} \propto 1+\cos 2 \phi_{0} \frac{\sin ^{2} \theta}{1+\cos ^{2} \theta}\left(\frac{5 H_{1}^{f a v} H_{2}^{f a v}+5 H_{1}^{d i s} H_{2}^{d i s}+2 H_{1 s \rightarrow \pi}^{d i s} H_{2 s \rightarrow \pi}^{d i s}}{5 D_{1}^{f a v} D_{2}^{f a v}+5 D_{1}^{d i s} D_{2}^{d i s}+2 D_{1 s \rightarrow \pi}^{d i s} D_{2 s \rightarrow \pi}^{d i s}}\right. \\
\left.-\frac{5 H_{1}^{f a v} H_{2}^{d i s}+5 H_{1}^{d i s} H_{2}^{f a v}+2 H_{1 s \rightarrow \pi}^{d i s} H_{2 s \rightarrow \pi}^{d i s}}{5 D_{1}^{f a v} D_{2}^{d i s}+5 D_{1}^{d i s} D_{2}^{f a v}+2 D_{1 s \rightarrow \pi}^{d i s} D_{2 s \rightarrow \pi}^{d i s}}\right)
\end{gathered}
$$

For pion-Kaon couples:

$$
D^{\frac{U_{\pi K}}{L_{\pi K}}} \propto 1+\cos 2 \phi_{0} \frac{\sin ^{2} \theta}{1+\cos ^{2} \theta} \times
$$

For Kaon-Kaon couples:

A full phenomenological study needed!

$$
\begin{aligned}
& \left.-\frac{4 H_{1 K}^{f a v} H_{2 K}^{d i s}+4 H_{1 K}^{d i s} H_{2 K}^{f a v}+2 H_{1 K}^{d i s} H_{2 K}^{d i s}+H_{1 s \rightarrow K}^{d i s} H_{2 s \rightarrow K}^{f a v}+H_{1 s \rightarrow K}^{f a v} H_{2 s \rightarrow K}^{\text {dis }}}{4 D_{1 K}^{f a v} D_{2 K}^{d i s}+4 D_{1 K}^{\text {dis }} D_{2 K}^{f a v}+2 D_{1 K}^{d i s} D_{2 K}^{\text {dis }}+D_{1 s \rightarrow K}^{\text {dis }} D_{2 s \rightarrow K}^{\text {fav }}+D_{1 s \rightarrow K}^{f a v} D_{2 s \rightarrow K}^{d i s}}\right)
\end{aligned}
$$

How to determine the $\mathrm{P}_{i j}$?

How to determine the P_{ij} ?

From data!

How to determine the $\mathrm{P}_{i j}$?

$D^{*} \beth_{\pi_{\text {slow }}^{+}}^{D^{0}}$

How to determine the $\mathrm{P}_{i j}$?

$D^{*} \longleftarrow \pi_{\pi_{\text {slow }}^{+}}^{D^{0}} \beth_{\pi_{\text {fast }}^{+}}^{K^{-}}$

How to determine the $P_{i j}$

$D^{*} \beth_{\pi_{\text {slow }}^{+}}^{D^{0}} \searrow_{\pi_{\text {fast }}^{+}}^{K^{-}}$
 From data!

Negative hadron $=K^{-}$ (no PID likelihood used)

How to determine the $P_{i j}$

$D^{*} \beth_{\pi_{\text {slow }}^{+}}^{D^{0}} \searrow_{\pi_{\text {fast }}^{+}}^{K^{-}}$

Negative hadron identified as π

Negative hadron $=K^{-}$ (no PID likelihood used)

How to determine the $P_{i j}$

$D^{*} \beth_{\pi_{\text {slow }}^{+}}^{D^{0}} \searrow_{\pi_{\text {fast }}^{+}}^{K^{-}}$
 From data!

Negative hadron $=K^{-}$ (no PID likelihood used)

How to determine the $P_{i j}$

$D^{*} \beth_{\pi_{\text {slow }}^{+}}^{D^{0}} \searrow_{\pi_{\text {fast }}^{+}}^{K^{-}}$
 From data!

Negative hadron $=K^{-}$ (no PID likelihood used)

How to determine the $P_{i j}$

$D^{*} \beth_{\pi_{\text {slow }}^{+}}^{D^{0}} \searrow_{\pi_{\text {fast }}^{+}}^{K^{-}}$
 From data!

Negative hadron $=K^{-}$ (no PID likelihood used)

How to determine the P_{ij}

$D^{*} \longleftarrow{ }_{\pi_{\text {slow }}^{+}}^{D^{0}} \varlimsup_{\pi_{\text {fast }}^{+}}^{K^{-}}$
 From data!

How to determine the P_{ij}

From data!

Kinematic varriables

$z \equiv \frac{E_{h}}{E_{p}} \quad \begin{aligned} & \text { hadron energy fraction } \\ & \text { with respect to parton }\end{aligned}$
$p_{T \text { component of hadron momentum transverse }}$ to reference direction
I. $\phi_{1}+\phi_{2}$ method: the thrust axis $\mathrm{p}_{\mathrm{T} 1}, \mathrm{p}_{\mathrm{T} 2}$
2. ϕ_{0} method: hadron $2 \mathrm{p}_{\mathrm{TO}}$
q_{T} component of virtual photon momentum transverse to the $h_{1} h_{2}$ axis in the frame
where h_{1} and h_{2} are back-to-back

z	0.2	0.25	0.3	0.42	I				
РTI2	0	0.13	0.3	0.5	3				
РT0	0	0.13	0.25	0.4	0.5	0.6	0.75	I	3
qT	0	0.5	I	1.25	1.5	1.75	2	2.25	2.5
$\sin ^{2} \boldsymbol{\theta} /\left(\mathrm{I}+\cos ^{2} \boldsymbol{\theta}\right)$	0.4	0.45	0.5	0.6	0.7	0.8	0.9	0.97	I

Belle vs. Babar

