COLLINS MEASUREMENTS @ BELLE

Francesca Giordano for the BELLE Collaboration Spin 2014, Beijing, China, October 22nd, 2014

Fragmentation process or how do the hadrons get formed?

Cleanest way to access FF is $e+e- \rightarrow q\bar{q}$

- Fragmentation function describes the process of hadronization of a parton
- Strictly related to quark confinement
- Universal: can be used to study the nucleon structure when combined with SIDIS and hadronic reactions data

Collins mechanism: correlation between the parton transverse spin and the direction of final hadron

Collins mechanism: correlation between the parton transverse spin and the direction of final hadron

strictly related to the outgoing hadron tranverse momentum

Collins mechanism: correlation between the parton transverse spin and the direction of final hadron

strictly related to the outgoing hadron tranverse momentum

TMD!

Chiral odd!

 $X \otimes H_{I}^{\perp}$

chiral odd chiral odd

In e+e- reaction, there is no fixed transverse axis to define azimuthal angles to, and even if there were one the net quark polarization would be O

In e+e- reaction, there is no fixed transverse axis to define azimuthal angles to, and even if there were one the net quark polarization would be O

But if we look at the whole event, even though the q and \bar{q} spin directions are unknown, there is a known correlation between them

$$e^+e^- \to q \,\bar{q} \to h_1 \,h_2 \,X$$

Reference frames

 $z \equiv \frac{E_h}{E_a}$

$$h = \pi, K$$

 $\phi_1 + \phi_2$ method: ϕ_0 method: hadron azimuthal angles with respect hadron 1 azimuthal angle with respect to the qq axis proxy to hadron 2 Thrust axis= proxy $\mathbf{P}_{h2\perp}$ for the qq axis \mathbf{P}_{h2} $\phi_2 - \pi$ \mathbf{P}_{h1} Ph \mathbf{P}_{h1} \mathbf{P}_{h1} e^{\dashv} e^{\uparrow} Thrust axis $\sigma \sim \mathcal{M}_{12} \Big(1 + \frac{\sin^2 \theta_T}{1 + \cos^2 \theta_T} \cos(\phi_1 + \phi_2) \frac{H_1^{\perp [1]}(z_1) \bar{H}_1^{\perp [1]}(z_2)}{D_1^{[0]}(z_1) \bar{D}_2^{[0]}(z_2)} \Big) \quad \sigma \sim \mathcal{M}_0 \Big(1 + \frac{\sin^2 \theta_2}{1 + \cos^2 \theta_2} \cos(2\phi_0) \mathcal{F} \Big[\frac{H_1^{\perp}(z_1) \bar{H}_1^{\perp}(z_2)}{D_2^{\perp}(z_1) \bar{D}_2^{\perp}(z_2)} \Big] \Big)$ $F^{[n]}(z_i) \equiv \int d|k_T|^2 \left[\frac{|k_T|}{M_i}\right]^{[n]} F(z_i, |k_T|^2) \qquad \mathcal{F}[X] = \sum_{a\bar{a}} \int [2\hat{\mathbf{h}} \cdot \mathbf{k_{T1}} \hat{\mathbf{h}} \cdot \mathbf{k_{T2}} - \mathbf{k_{T1}} \cdot \mathbf{k_{T2}}]$ $d^2\mathbf{k_{T1}}d^2\mathbf{k_{T2}}\,\delta^2(\mathbf{k_{T1}}+\mathbf{k_{T2}}-\mathbf{q_T})X$ D. Boer Nucl.Phys.B806:23,2009 5 Francesca Giordano

Reference frames

 $e^+e^- \to q \,\bar{q} \to h_1 \,h_2 \,X$

$$h = \pi, K$$

 $\phi_1+\phi_2$ method: hadron azimuthal angles with respect to the qq axis proxy

 ϕ_0 method: hadron 1 azimuthal angle with respect to hadron 2

$$\mathcal{R}_{12} = \frac{N_{12}(\phi_1 + \phi_2)}{\langle N_{12} \rangle}$$

 $\mathcal{R}_0 = \frac{N_0(\phi_0)}{\langle N_0 \rangle}$

Francesca Giordano

 $z \equiv \frac{E_h}{E_q}$

BELLE @ KEKB

Good tracking Θ [17⁰;150⁰] and vertex resolution

Good PID: ε(π) ≥ 90% ε(K) ≥ 85%

But! Acceptance and radiation effects also contribute to azimuthal asymmetries!

-1 0 1

But! Acceptance and radiation effects also contribute to azimuthal asymmetries!

0.9 4

To reduce such non-Collins effects:

divide the sample of hadron couples in unlike-sign and like-sign (or All-charges), and extract the asymmetries of the super ratios between these 2 samples:

Unlike-sign couples / Like-sign couples

Unlike-sign couples / All charges

$$\mathcal{D}^{h_1h_2}_{ul} = \mathcal{R}^U/\mathcal{R}^L$$

$$\mathcal{D}_{uc}^{h_1h_2} = \mathcal{R}^U / \mathcal{R}^C$$

Reference frames

 $e^+e^- \to q \,\bar{q} \to h_1 \,h_2 \,X$

$$h = \pi, K$$

Reference frames

 $e^+e^- \to q \,\bar{q} \to h_1 \,h_2 \,X$

$$h = \pi, K$$

Belle publications PRL 96,232002, (2006) PRD 78, 032011 (2008)

Published results: $\pi\pi$

ϕ_1 + ϕ_2 method

ϕ_0 method

Francesca Giordano

10

Collins amplitudes in SIDIS

Collins amplitudes in SIDIS

Collins amplitudes in SIDIS

More recently...

Extraction of Collins asymmetries for π K and KK couples!

 ϕ_1 + ϕ_2 method will soon follow...

 $i = \pi, K$

 $N^{j,raw} = P_{ij}N^i$

 $i = \pi, K$

$$N^{j,raw} = P_{ij}N^i$$

Perfect PID $\Rightarrow j = i$

$$(j = e, \mu, \pi, K, p)$$

$$P_{ij} = \begin{pmatrix} P_{e \to e} & P_{e \to \mu} & P_{e \to \pi} & P_{e \to K} & P_{e \to p} \\ P_{\mu \to e} & P_{\mu \to \mu} & P_{\mu \to \pi} & P_{\mu \to K} & P_{\mu \to p} \\ P_{\pi \to e} & P_{\pi \to \mu} & P_{\pi \to \pi} & P_{\pi \to K} & P_{\pi \to p} \\ P_{K \to e} & P_{K \to \mu} & P_{K \to \pi} & P_{K \to K} & P_{K \to p} \\ P_{p \to e} & P_{p \to mu} & P_{p \to \pi} & P_{p \to K} & P_{p \to p} \end{pmatrix}$$

 $i = \pi, K$

$$N^{j,raw} = P_{ij}N^i$$

Perfect PID $\Rightarrow j = i$

$$(j = e, \mu, \pi, K, p)$$

$$P_{ij} = \begin{pmatrix} P_{e \to e} & P_{e \to \mu} & P_{e \to \pi} & P_{e \to K} & P_{e \to p} \\ P_{\mu \to e} & P_{\mu \to \mu} & P_{\mu \to \pi} & P_{\mu \to K} & P_{\mu \to p} \\ P_{\pi \to e} & P_{\pi \to \mu} & P_{\pi \to \pi} & P_{\pi \to K} & P_{\pi \to p} \\ P_{K \to e} & P_{K \to \mu} & P_{K \to \pi} & P_{K \to K} & P_{K \to p} \\ P_{p \to e} & P_{p \to mu} & P_{p \to \pi} & P_{p \to K} & P_{p \to p} \end{pmatrix}$$

p_{π, **k**->j} from D* decay **p**_{π, **p**->j} from Λ decay **p**_{e, µ->j} from J/ψ decay

 $(i = \pi, K)$

$$N^{j,raw} = P_{ij}N^i$$

Perfect PID
$$\Rightarrow j = i$$

 $P_{ij} \rightleftharpoons P_{ij}(p,\theta)$

$$(j = e, \mu, \pi, K, p)$$

$$P_{ij} = \begin{pmatrix} P_{e \to e} & P_{e \to \mu} & P_{e \to \pi} & P_{e \to K} & P_{e \to p} \\ P_{\mu \to e} & P_{\mu \to \mu} & P_{\mu \to \pi} & P_{\mu \to K} & P_{\mu \to p} \\ P_{\pi \to e} & P_{\pi \to \mu} & P_{\pi \to \pi} & P_{\pi \to K} & P_{\pi \to p} \\ P_{K \to e} & P_{K \to \mu} & P_{K \to \pi} & P_{K \to K} & P_{K \to p} \\ P_{p \to e} & P_{p \to mu} & P_{p \to \pi} & P_{p \to K} & P_{p \to p} \end{pmatrix} \longrightarrow$$

p_{π, **k**->j} from D* decay **p**_{π, **p**->j} from Λ decay **p**_{e, µ->j} from J/ψ decay

uds-charm-bottom-tau contributions

uds-charm-bottom-tau contributions

Collins asymmetries

*p*oasymmetries

But we must be careful! charm have different contributions for the different pairs ππ => non-zero asymmetries, increase with z₁, z₂ and p_{T0}
πK => asymmetries compatible with zero
KK => non-zero asymmetries, increase with z₁,z₂ and p_{T0} similar size of pion-pion
Unlike/Like πK
Unlike/Like KK

$sin^2\Theta/(1+cos^2\Theta)$ dependence

Sumary & outlook

- ϕ_0 asymmetries
 - present similar features for $\pi\pi$ and KK couples
 - very small/compatible with zero for πK couples
 - for $\pi\pi$ and πK the sin² $\Theta/(1+\cos^2\Theta)$ dependence of asymmetries are not inconsistent with a linear dependence going to zero
 - KK show a more convoluted $\sin^2\Theta/(1+\cos^2\Theta)$ dependence

Sumary & outlook

- ϕ_0 asymmetries
 - present similar features for $\pi\pi$ and KK couples
 - very small/compatible with zero for πK couples
 - for $\pi\pi$ and πK the sin² $\Theta/(1+\cos^2\Theta)$ dependence of asymmetries are not inconsistent with a linear dependence going to zero
 - KK show a more convoluted $\sin^2 \Theta / (1 + \cos^2 \Theta)$ dependence
 - ϕ_{12} asymmetries with Thrust axis in progress
- study using jet algorithm instead of Thrust in progress

Sumary & outlook

- ϕ_0 asymmetries
 - present similar features for $\pi\pi$ and KK couples
 - very small/compatible with zero for πK couples
 - for $\pi\pi$ and πK the sin² $\Theta/(1+\cos^2\Theta)$ dependence of asymmetries are not inconsistent with a linear dependence going to zero
 - KK show a more convoluted $\sin^2 \Theta / (1 + \cos^2 \Theta)$ dependence
- ϕ_{12} asymmetries with Thrust axis in progress
- study using jet algorithm instead of Thrust in progress

Fragmentation contributions

 $u, d \to \pi (u\bar{d}, \bar{u}d)$

$$\begin{aligned} D^{fav} &= D_u^{\pi^+} = D_d^{\pi^-} = D_{\bar{u}}^{\pi^-} = D_{\bar{d}}^{\pi^+} \\ D^{dis} &= D_u^{\pi^-} = D_d^{\pi^+} = D_{\bar{u}}^{\pi^+} = D_{\bar{d}}^{\pi^-} \end{aligned}$$

 $s \to \pi \; (u\bar{d}, \; \bar{u}d)$

$$D_{s \to \pi}^{dis} = D_s^{\pi^+} = D_s^{\pi^-} = D_{\bar{s}}^{\pi^+} = D_{\bar{s}}^{\pi^-}$$

$$\begin{split} u, \, d \to K \; (u\bar{s}, \; \bar{u}s) \\ & D_{u \to K}^{fav} = D_u^{K^+} = D_{\bar{u}}^{K^-} \\ D_{u,d \to K}^{dis} = D_u^{K^-} = D_{\bar{u}}^{K^+} = D_d^{K^+} = D_{\bar{d}}^{K^-} = D_d^{K^-} = D_{\bar{d}}^{K^+} \\ s \to K \; (u\bar{s}, \; \bar{u}s) \\ & D_{s \to K}^{fav} = D_s^{K^-} = D_{\bar{s}}^{K^+} \\ D_{s \to K}^{dis} = D_s^{K^+} = D_{\bar{s}}^{K^-} \end{split}$$

In the end we are left with 7 possible fragmentation functions:

 $D^{fav}, D^{dis}, D^{dis}_{s \to \pi}, D^{fav}_{u \to K}, D^{dis}_{u,d \to K}, D^{fav}_{s \to K}, D^{dis}_{s \to K}$

Assuming charm contribute only as a dilution

Fragmentation contributions

For pion-pion couples:

$$D^{\frac{U_{\pi\pi}}{L_{\pi\pi}}} \propto 1 + \cos 2\phi_0 \frac{\sin^2 \theta}{1 + \cos^2 \theta} \left(\frac{5H_1^{fav}H_2^{fav} + 5H_1^{dis}H_2^{dis} + 2H_{1s \to \pi}^{dis}H_{2s \to \pi}^{dis}}{5D_1^{fav}D_2^{fav} + 5D_1^{dis}D_2^{dis} + 2D_{1s \to \pi}^{dis}D_{2s \to \pi}^{dis}} - \frac{5H_1^{fav}H_2^{dis} + 5H_1^{dis}H_2^{fav} + 2H_{1s \to \pi}^{dis}H_{2s \to \pi}^{dis}}{5D_1^{fav}D_2^{dis} + 5D_1^{dis}D_2^{fav} + 2D_{1s \to \pi}^{dis}D_{2s \to \pi}^{dis}} \right)$$

For pion-Kaon couples:

$$D^{\frac{U_{\pi K}}{L_{\pi K}}} \propto 1 + \cos 2\phi_0 \frac{\sin^2 \theta}{1 + \cos^2 \theta} \times$$

 $\begin{pmatrix} 4H_{1}^{fav}H_{2K}^{fav} + H_{1K}^{dis}(5H_{2}^{dis} + H_{2}^{fav}) + H_{2K}^{dis}(5H_{1}^{dis} + H_{1}^{fav}) + 4H_{1K}^{fav}H_{2}^{fav} + H_{1s \to \pi}^{dis}(H_{2s \to K}^{dis} + H_{2s \to K}^{fav}) + H_{2s \to \pi}^{dis}(H_{1s \to K}^{fav} + H_{1s \to K}^{dis}) \\ \hline 4D_{1}^{fav}D_{2K}^{fav} + D_{1K}^{dis}(5D_{2}^{dis} + D_{2}^{fav}) + D_{2K}^{dis}(5D_{1}^{dis} + D_{1}^{fav}) + 4D_{1K}^{fav}D_{2}^{fav} + D_{1s \to \pi}^{dis}(D_{2s \to K}^{dis} + D_{2s \to K}^{fav}) + D_{2s \to \pi}^{dis}(D_{1s \to K}^{fav} + D_{1s \to K}^{dis}) \\ \hline H_{2K}^{dis}(5H_{1}^{fav} + H_{1}^{dis}) + 4H_{1K}^{fav}H_{2}^{dis} + 4H_{1}^{dis}H_{2K}^{fav} + H_{1K}^{dis}(5H_{2}^{fav} + H_{2}^{dis}) + H_{1s \to \pi}^{dis}(H_{2s \to K}^{fav} + H_{2s \to K}^{dis}) + (H_{1s \to K}^{dis} + H_{1s \to K}^{fav})H_{2s \to \pi}^{dis} \\ \hline D_{2K}^{dis}(5D_{1}^{fav} + D_{1}^{dis}) + 4D_{1K}^{fav}D_{2}^{dis} + 4D_{1}^{dis}D_{2K}^{fav} + D_{1K}^{dis}(5D_{2}^{fav} + D_{2}^{dis}) + D_{1s \to \pi}^{dis}(D_{2s \to K}^{fav} + D_{2s \to K}^{dis}) + (D_{1s \to K}^{dis} + D_{1s \to K}^{fav})D_{2s \to \pi}^{dis} \end{pmatrix}$

For Kaon-Kaon couples:

$$D \frac{U_{KK}}{L_{KK}} \propto 1 + \cos 2\phi_0 \frac{\sin^2 \theta}{1 + \cos^2 \theta} \left(\frac{4H_{1K}^{fav} H_{2K}^{fav} + 6H_{1K}^{dis} H_{2K}^{dis} + H_{1s \to K}^{dis} H_{2s \to K}^{dis} + H_{1s \to K}^{fav} H_{2s \to K}^{fav}}{4D_{1K}^{fav} D_{2K}^{fav} + 6D_{1K}^{dis} D_{2K}^{dis} + D_{1s \to K}^{dis} D_{2s \to K}^{dis} + D_{1s \to K}^{fav} D_{2s \to K}^{fav}} - \frac{4H_{1K}^{fav} H_{2K}^{dis} + 4H_{1K}^{dis} H_{2K}^{fav} + 2H_{1K}^{dis} H_{2K}^{dis} + H_{1s \to K}^{dis} H_{2s \to K}^{fav} + D_{1s \to K}^{fav} D_{2s \to K}^{fav}}{4D_{1K}^{fav} D_{2K}^{dis} + 2H_{1K}^{dis} H_{2K}^{dis} + H_{1s \to K}^{dis} H_{2s \to K}^{fav} + H_{1s \to K}^{fav} H_{2s \to K}^{dis}} \right)$$

Fragmentation contributions

For pion-pion couples:

$$D_{L_{\pi\pi}} \propto 1 + \cos 2\phi_0 \frac{\sin^2 \theta}{1 + \cos^2 \theta} \left(\frac{5H_1^{fav} H_2^{fav} + 5H_1^{dis} H_2^{dis} + 2H_{1s \to \pi}^{dis} H_{2s \to \pi}^{dis}}{5D_1^{fav} D_2^{fav} + 5D_1^{dis} D_2^{dis} + 2D_{1s \to \pi}^{dis} D_{2s \to \pi}^{dis}} - \frac{5H_1^{fav} H_2^{dis} + 5H_1^{dis} H_2^{fav} + 2H_{1s \to \pi}^{dis} H_{2s \to \pi}^{dis}}{5D_1^{fav} D_2^{dis} + 5D_1^{dis} D_2^{fav} + 2D_{1s \to \pi}^{dis} D_{2s \to \pi}^{dis}} \right)$$

For pion-Kaon couples:

$$D^{\frac{U_{\pi K}}{L_{\pi K}}} \propto 1 + \cos 2\phi_0 \frac{\sin^2 \theta}{1 + \cos^2 \theta} \times$$

 $\begin{pmatrix} 4H_{1}^{fav}H_{2K}^{fav} + H_{1K}^{dis}(5H_{2}^{dis} + H_{2}^{fav}) + H_{2K}^{dis}(5H_{1}^{dis} + H_{1}^{fav}) + 4H_{1K}^{fav}H_{2}^{fav} + H_{1s \to \pi}^{dis}(H_{2s \to K}^{dis} + H_{2s \to K}^{fav}) + H_{2s \to \pi}^{dis}(H_{1s \to K}^{fav} + H_{1s \to K}^{dis}) \\ \hline 4D_{1}^{fav}D_{2K}^{fav} + D_{1K}^{dis}(5D_{2}^{dis} + D_{2}^{fav}) + D_{2K}^{dis}(5D_{1}^{dis} + D_{1}^{fav}) + 4D_{1K}^{fav}D_{2}^{fav} + D_{1s \to \pi}^{dis}(D_{2s \to K}^{dis} + D_{2s \to K}^{fav}) + D_{2s \to \pi}^{dis}(D_{1s \to K}^{fav} + D_{1s \to K}^{dis}) \\ \hline H_{2K}^{dis}(5H_{1}^{fav} + H_{1}^{dis}) + 4H_{1K}^{fav}H_{2}^{dis} + 4H_{1}^{dis}H_{2K}^{fav} + H_{1K}^{dis}(5H_{2}^{fav} + H_{2}^{dis}) + H_{1s \to \pi}^{dis}(H_{2s \to K}^{fav} + H_{2s \to K}^{dis}) + (H_{1s \to K}^{dis} + H_{1s \to K}^{fav})H_{2s \to \pi}^{dis} \\ \hline D_{2K}^{dis}(5D_{1}^{fav} + D_{1}^{dis}) + 4D_{1K}^{fav}D_{2}^{dis} + 4D_{1}^{dis}D_{2K}^{fav} + D_{1K}^{dis}(5D_{2}^{fav} + D_{2}^{dis}) + D_{1s \to \pi}^{dis}(D_{2s \to K}^{fav} + D_{2s \to K}^{dis}) + (D_{1s \to K}^{dis} + D_{1s \to K}^{fav})D_{2s \to \pi}^{dis} \end{pmatrix}$

For Kaon-Kaon couples:

$$D \frac{U_{KK}}{L_{KK}} \propto 1 + \cos 2\phi_0 \frac{\sin^2 \theta}{1 + \cos^2 \theta} \left(\frac{4H_{1K}^{fav} H_{2K}^{fav} + 6H_{1K}^{dis} H_{2K}^{dis} + H_{1s \to K}^{dis} H_{2s \to K}^{dis} + H_{1s \to K}^{fav} H_{2s \to K}^{fav} + H_{1s \to K}^{fav} H_{2s \to K}^{dis} + H_{1s \to K}^{dis} H_{2s \to K}^{fav} + H_{1s \to K}^{fav} H_{2s \to K}^{dis} + H_{1s \to K}^{dis} H_{2s \to K}^{fav} + H_{1s \to K}^{fav} H_{2s \to K}^{dis} + H_{1s \to K}^{dis} + H_{1s \to K}^{dis} H_{2s \to K}^{dis} + H_{1s \to$$

A full phenomenological study needed!

From data!

From data!

From data!

From data!

Negative hadron = K^- (no PID likelihood used)

From data!

Negative hadron = K^- (no PID likelihood used)

(no PID likelihood used)

From data!

From data!

From data!

Kinematic variables

hadron energy fraction with respect to parton Z_1, Z_2

- p_T component of hadron momentum transverse to reference direction
 - 1. $\phi_1 + \phi_2$ method: the thrust axis p_{T1} , p_{T2}

2. ϕ_0 method: hadron 2 p_{TO}

 Q_T component of virtual photon momentum transverse to the h_1h_2 axis in the frame where h_1 and h_2 are back-to-back

Z	0.2	0.25	0.3	0.42					
Ρ ΤΙ2	0	0.13	0.3	0.5	3				
Ρτο	0	0.13	0.25	0.4	0.5	0.6	0.75	I	3
q⊤	0	0.5	I	1.25	l.5	1.75	2	2.25	2.5
$sin^2 \Theta / (1 + cos^2 \Theta)$	0.4	0.45	0.5	0.6	0.7	0.8	0.9	0.97	I

Belle vs. Babar

