Polarization effects in deuteron-induced reactions

Li Ou (欧立)1 Zhigang Xiao (肖志刚)2

1Guangxi Normal University, China
2Tsinghua University, China

2014.10.22-25 @ SPIN2014 PKU, Beijing
Outline

1. Motivation
2. Model
3. Results and discussion
4. Summary
Outline

1. Motivation
2. Model
3. Results and discussion
4. Summary
The energy of per nucleon in a nuclear matter $E(\rho, \delta, T)$.
What & Why Symmetry Energy

Symmetry Energy

\[E(\rho, \delta) = E(\rho, 0) + E_{\text{sym}}(\rho)\delta^2 + \mathcal{O}(\delta^4) \]

\[E_{\text{sym}}(\rho) = E(\rho, \delta = 1) - E(\rho, \delta = 0) \]

Isospin Dependence of Strong Interactions

- Nuclear Masses
 - Neutron Skin Thickness
 - Isovector Giant Dipole Resonances
 - Fission
- Heavy Ion Flows
 - Multi-Fragmentation
 - Nuclei Far from Stability
 - Rare Isotope Beams

Many-Body Theory

Symmetry Energy

(Magnitude and Density Dependence)

- Supernovae
 - Weak Interactions
 - Early Rise of \(L_{\nu e} \)
 - Bounce Dynamics
 - Binding Energy
- Proto-Neutron Stars
 - \(\nu \) Opacities
 - \(\nu \) Emissivities
 - SN r-Process
 - Metastability
- Neutron Stars
 - Observational Properties
- Binary Mergers
 - Decompression/Ejection of Neutron-Star Matter
 - r-Process

- QPO’s
 - Mass
 - Radius
- NS Cooling
 - Temperature
 - \(R_m, z \)
 - Direct Urca
 - Superfluid Gaps
- X-ray Bursters
 - \(R_m, z \)
- Gravity Waves
 - Mass/Radius
 - dR/dM
- Pulsars
 - Masses
 - Spin Rates
 - Moments of Inertia
 - Magnetic Fields
 - Glitches - Crust

There is great uncertainty at super-high and sub-saturation density. Need to be constrained by experiment!
Current constraints on $E_{\text{sym}}(\rho)$

$E_{\text{sym}}(\rho_0) = 32.5 \pm 2.5$ MeV \quad L = 55 \pm 25$ MeV

$E_{\text{sym}}(\rho) = E_{\text{sym}}(\rho_0) (\rho/\rho_0)^\gamma$ \quad with \quad $\gamma = 0.9 \pm 0.4$
Outline

1. Motivation
2. Model
3. Results and discussion
4. Summary
Method

- proton
- neutron
Method

- From isoscale potential, deflexion;
- From Coulomb potential, anticlockwise;
- On proton from isovector potential;
- On neutron from isovector potential.

Stronger isovector potential larger α!!
F_s from isoscale potential, deflexion;
Method

F_S from isoscale potential, deflexion;

F_{Coul} from Coulomb potential, anticlockwise;
Method

\[F_s^n \text{ from isoscale potential, deflexion; } \]

\[F_{\text{Coul}} \text{ from Coulomb potential, anticlockwise; } \]

\[F_p^p \text{ on proton from isovector potential; } \]

\[F_v^n \text{ on neutron from isovector potential; } \]
Method

F_S from isoscale potential, deflexion;

F_{Coul} from Coulomb potential, anticlockwise;

F^p_V on proton from isovector potential;

F^n_V on neutron from isovector potential;

Stronger isovector potential larger α!!
\[\dot{r}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial r_i} \]

\[H = T + U_{\text{loc}} + U_{\text{Coul}} \]

\[U_{\text{Coul}} = \frac{1}{2} \int \rho_p(r) \frac{e^2}{|r-r'|} \rho_p(r') dr dr'. \]

\[T = \sum_i T_i = \sum_i \frac{p_i^2}{2m}, \]

\[U_{\text{loc}} = \int V_{\text{loc}} dr, \]

\[V_{\text{loc}}(\rho) = \frac{\alpha}{2} \frac{\rho^2}{\rho_0} + \frac{\beta}{\gamma+1} \frac{\rho^{\gamma+1}}{\rho_0^\gamma} + \frac{g_{\text{sur}}}{2\rho_0} (\nabla \rho)^2 \]

\[+ \frac{g_{\text{sur,iso}}}{\rho_0} [\nabla (\rho_n - \rho_p)]^2 + \frac{C_s}{2} \left(\frac{\rho}{\rho_0} \right)^{\gamma+1} \delta^2 + g_{\rho\tau} \frac{\rho_0^{8/3}}{\rho_0^{5/3}}. \]
Outline

1 Motivation
2 Model
3 Results and discussion
4 Summary
Isospin effect on polarization

Symmetry potential has effect on polarization angle.

\[
\cos \alpha = \frac{p^p_z - p^n_z}{|\vec{p}^p - \vec{p}^n|}
\]

randomly oriented projectile

100 MeV/u d\(^{124}\)Sn b=7 fm

\(\gamma = 0.5\)

\(\gamma = 2.0\)

\(\gamma = 0.5\)

\(\gamma = 2.0\)

randomly oriented projectile

\(\vec{z}\)
Isospin effect on polarization

Symmetry potential has effect on polarization angle.

Effect is more clear on pre-oriented projectile.
Symmetry potential has effect on polarization angle.

Effect is more clear on pre-oriented projectile.

Polarization direction is changed more with stronger symmetry potential ($\gamma = 0.5$).
With impact parameter decreases, the isospin effect becomes more and more weak.

- Asymmetry degree becomes smaller and smaller;
- Too strong isoscale potential weakens isospin effect.
Clear density range

- HIC, difficult to exclude collision events and distinguish the density.
HIC, difficult to exclude collision events and distinguish the density.

Deuteron breakup reaction, no collision and clear density range.
Clear density range

- HIC, difficult to exclude collision events and distinguish the density.
- Deuteron breakup reaction, no collision and clear density range.
Clear density range

- HIC, difficult to exclude collision events and distinguish the density.

- Deuteron breakup reaction, no collision and clear density range.
Clear density range

- **HIC**, difficult to exclude collision events and distinguish the density.
- Deuteron breakup reaction, no collision and clear density range.
Angle distribution

Stronger isovector potential
larger θ_p! smaller θ_n!
Angle distribution

Strong symmetry potential, peak closes to each other; Difference vanishes for randomly oriented projectile.

100 AMeV d+^{124}Sn @ b=7 fm
Angle distribution

Strong symmetry potential, peak closes to each other; Difference vanishes for randomly oriented projectile.

100 AMeV d+124Sn @ b=7 fm

\[\gamma = 0.5, 2.0 \]

\[p, n \]

\[dN/d\theta \]

isoscale potential
Angle distribution

Strong symmetry potential, peak closes to each other; Difference vanishes for randomly oriented projectile.

pre-oriented projectile

randomly oriented projectile

100 AMeV d+^{124}Sn @ b=7 fm

\(\gamma \)

0.5 2.0

p n

\(dN/d\theta \)

\(0 \quad 20 \quad 40 \quad 60 \)

\(\theta \)

\(0 \quad 20 \quad 40 \quad 60 \quad 80 \quad 100 \)

plus
Coulomb potential

isoscale potential
Angle distribution

pre-oriented projectile
100 AMeV d+^{124}Sn @ b=7 fm

\[\gamma \quad 0.5 \quad 2.0 \]
\[p \quad \square \quad \blacksquare \]
\[n \quad \circ \quad \bullet \]

randomly oriented projectile

\[\text{plus Coulomb potential} \quad \text{plus isovector potential on proton} \]

\[\text{isoscale potential} \]
Strong symmetry potential, peak closes to each other; Difference vanishes for randomly oriented projectile.
Strong symmetry potential, peak closes to each other;
Angle distribution

![Graphs showing angle distribution for pre-oriented and randomly oriented projectiles.]

- **Strong symmetry potential**, peak closes to each other;
- **Difference vanishes for randomly oriented projectile.**
Angle distribution

- **Strong symmetry potential, peak closes to each other;**

- **Difference vanishes for randomly oriented projectile.**
There is also clear (but smaller) isospin effect if pre-oriented direction is reversed. One possible reason is that the sequence of proton and neutron enter the meanfield is reversed.
There is also clear (but smaller) isospin effect if pre-oriented direction is reversed.
There is also clear (but smaller) isospin effect if pre-oriented direction is reversed.

One possible reason is that the sequence of proton and neutron enter the meanfield is reversed.
Outline

1 Motivation
2 Model
3 Results and discussion
4 Summary
Polarization effect of deuteron due to isovector interaction in the nuclear potential of heavy target is investigated within ImQMD framework.

Because of simple and clear reaction mechanism, pre-oriented deuteron-induced reaction provide a very clean probe to detect the density dependence of symmetry energy.
Thanks!