

Initial Research of np Scattering with Polarized Deuterium Target at ANKE/COSY

Boxing Gou for the ANKE-Collaboration

Spin2014 October 20, 2014

Outline

- Physics motivation
- Experimental facilities
- > Initial research commissioning experiment at $T_p = 600 \, MeV$
- Polarimetry
 - $p\vec{d} \rightarrow pd$
 - $p\vec{d} \rightarrow d\pi^+ n_{sp}$
- ightharpoonup Charge-Exchange deuteron breakup reaction $p\vec{d} \to \{pp\}n$
- Summary and outlook

Motivation – Investigate np system

np experimental data above 800 MeV are scarce

ANKE is able to explore the small-angle regions by studying the np charge-exchange and np-forward reactions thus can improve our understanding about np system.

Motivation – Investigate np system

Deuteron is used as source for quasi free polarized neutron for np program at ANKE

Achieved results

With deuteron beam, investigation has been done at COSY up to T_N=1.135GeV

D. Mchedlishvili et al. Eur. Phys. J. A 49, 49

Extend np study

Use deuteron target, study up to $T_p = 2.8 \text{ GeV}$

Experimental facilities – COSY and ANKE

COSY – COoler **SY**nchrotron

ANKE - Apparatus for Studies of Nucleon and Kaon Ejectiles

- \triangleright PID using $\triangle E$.
- > Event vertices reconstructed.
- $\triangleright \{pp\}_{s}$ registered.

Experimental facilities – Polarized Internal Target (PIT)

Atomic Beam Sources (ABS)

- Polarized D beam
- Different modes (Qy, Qyy)
- ➤ High polarization
 Ideal value: (+1 +1)
 Lab value (~ 0.7, ~ 0.7)
- Beam size at IP σ = 2.85 ± 0.42 mm

Target Chamber (TC)

- > STT
- > Storage Cell (SC)

15x20x370 mm 3 To increase the target intensity (10 $^{13}\ cm^{-2}$)

Lamb-Shift Polarimeter (LSP)

- > Tune the setting of ABS
- > Fast on-line measurement

Initial research - Commissioning experiment

June 2012

- **Beam:** Unpolarized proton beam $(T_p = 600 \text{ MeV})$
- > Targets:

Deuterium						
	Q_{y}	Q_{yy}				
Pol.1	+1	+1				
Pol.2	-1	+1				
Pol.3	0	-2				
Pol.4	0	+1				
Unpol.	0	0				
N ₂ : background simulation of cell wall						
Empty cell: generate background						

- Pol. 1 and pol. 2 switch between each other every 10 sec.
- Pol. 3 and pol. 4 switch between each other every 10 sec.

√ N₂ target: to simulate the background caused by cell

Polarimetry - $p\vec{d} \rightarrow pd$

Very little background under the peak

- ✓ High cross section.
- ✓ High and well-known analyzing powers (A_v & A_{vv}).
- ✓ Covered by the detectors (STT).

Polarimetry - Principle $(p\vec{d} \rightarrow pd)$

$$\frac{d\sigma}{d\Omega}(\theta,\phi) = \left(\frac{d\sigma}{d\Omega}\right)_{0}(\theta)\left\{1 + \frac{3}{2}Q_{y}A_{y}(\theta)\cos\phi + \frac{1}{4}Q_{yy}[A_{yy}(\theta)(1+\cos2\phi) + A_{xx}(\theta)(1-\cos2\phi)]\right\}$$

Observable

$$\varepsilon(\theta,\varphi) = \frac{N_a - N_b}{N_a + N_b}$$

$$\begin{cases} a = 1 \\ b = 2 \end{cases} OR \begin{cases} a = 3 \\ b = 4 \end{cases}$$

- Target densities of modes a and b equal
- Mode a and b switch every 10 sec
- ✓ Systematic errors minimized ☺

Fitting function

$$\epsilon(\theta,\varphi) \frac{\frac{3}{2} A_{y}(\theta) cos \varphi(Q_{y}^{a} - Q_{y}^{b}) + \frac{1}{4} [A_{yy}(\theta)(1 + cos 2\varphi) + A_{xx}(\theta)(1 - cos 2\varphi)] (Q_{yy}^{a} - Q_{yy}^{b})}{2 + \frac{3}{2} A_{y}(\theta) cos \varphi(Q_{y}^{a} + Q_{y}^{b}) + \frac{1}{4} [A_{yy}(\theta)(1 + cos 2\varphi) + A_{xx}(\theta)(1 - cos 2\varphi)] (Q_{yy}^{a} + Q_{yy}^{b})}$$

Polarimetry - 2-dimentional fit

Modes 3 and 4

Polarimetry - Systematic error

Change parameters of polynomial functions and repeat the fit procedure

(0 0)				(0 0)	(0 . 4)
$(Q_{\nu}, Q_{\nu\nu})$): ((+1, +1), ([-1, +1), ((0, -2), ((0, +1)

Pol.	Modes 1, 2			Modes 3, 4		
	Ideal	Measured	Sys. err.	Idea I	Measured	Sys. err.
ΔQ_y	+2	1.46 ± 0.01	0.03	0	-0.07 ± 0.01	0.01
$\langle Q_y \rangle$	0	-0.03 ± 0.01	0.01	0	-0.02 ± 0.02	0.01
ΔQ_{yy}	0	0.17 ± 0.02	0.01	-3	-1.68 ± 0.02	0.14
$\langle Q_{yy} \rangle$	+1	0.88 ± 0.03	0.11	-0.5	-0.13 ± 0.06	0.03

Polarimetry - $p\vec{d} \rightarrow d\pi^+ n_{sp}$

Quasi-free: $p\vec{p} \rightarrow d\pi^+$

$$N(\theta, \varphi) = N_0(\theta)[1 + Q_{\gamma}A_{\gamma}(\theta)\cos\varphi]$$

 A_y of $\vec{p}p \rightarrow d\pi^+$ from SAID

$$|Q^{\uparrow}| = |Q^{\downarrow}| = Q_y$$

$$\frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} = \mathbf{Q}_y A_y(\theta) \cos \varphi$$

Charge-Exchange $p \vec{d} o \{pp\}n$ - Identification

Fewer deuterons in 2-track events

Shape of the background from the storage cell is simulated by nitrogen gas.

 $p\bar{d} \rightarrow \{pp\}n$ is isolated by building missing mass spectrum for 2-track events in STT

Charge-Exchange $p\vec{d} \to \{pp\}n$ - A_{yy}

CE reaction is not sensitive to deuteron vector polarization if $\{pp\}$ is in ${}^{1}S_{0}$ $(E_{\{pp\}} < 3MeV)$

$$\frac{N^{p}(\theta, q)}{N^{0}(q)} = \left[1 + \frac{1}{4}Q_{yy}A_{yy}(q)(1 + \langle \cos 2\phi \rangle)\right]$$

Summary and Outlook

- > Target commissioning experiment was successful
- \triangleright High performance of the deuterium target was achieved (Q_v, Q_{vv} > 70%)
- Reliable polarimetry (STT, $p\vec{d} \rightarrow pd$ at 600 MeV)
- Initial np study carried out at 600 MeV
- Production experiment: next week

Thank you

Modes 1 and 2

Modes 3 and 4

Systematic error

Change parameters of polynomial functions and repeat the fit procedure

