High deuteron polarization in polymer target materials

^{1,2}L.Wang, ¹W.Meyer,

¹Ch.Hess, ¹E.Radtke, ¹A.Berlin, ¹J.Herick, ¹G.Reicherz,

¹Institut of Experimental Physics AG I, Ruhr-University Bochum, Bochum, D-44780, Germany

²Physics Department, School of Science, Donghua University, Shanghai, 200051, China

³N.Doshita, ³K.Kondo, ³T.Iwata,

³Physics Department, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan

⁴N.Horikawa

⁴College of Engineering Chubu University, Kasugai, 487-850, Japan

Spin2014

Oct.2014

Content

- I. Dynamic nuclear polarization (DNP)
- 2. The trityl radicals progress for deuterated target materials
- 3. D-polymer materials: CD_2 and C_8D_8
- 4. The Bochum DNP-apparatus
- 5. EPR investigation and Polarization results for
 radiation doped
 CD₂
 trityl radical doped
 C₈D₈
- 6. Conclusion and outlook

Polarized Solid Targets

- Polarized solid targets are used in particle physics experiments since more than 50 years.
- Concerning polarized solid targets, most important quantities as input:

 P_t = target polarization

 $f = dilution factor = \frac{\# polarizable particles}{\# all particles}$

Asymmetry -----measurement with polarized targets

$$A = \frac{1}{P_t} \cdot \frac{1}{f} \cdot \frac{N \uparrow -N \downarrow}{N \uparrow +N \downarrow}$$

The Principle of Dynamic Nuclear Polarization

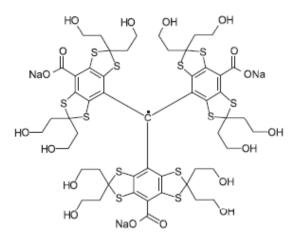
• Thermal Equilibrium (TE)

$$P = \frac{\langle I_Z \rangle}{I_Z^{\max}} = B_I \left(\frac{\mu B}{2kT}\right) \quad \propto \left(\frac{B}{T}\right)$$

B/T	P _p [%]	P _d [%]	P _e [%]
2.5T/1K	0.25	0.05	93
15T/10mK	91	30	100

- Dynamic Nuclear Polarization (DNP)
- Transfer of polarization from paramagnetic electrons to the nuclei
- Parameters of DNP: temperature; magnetic field; microwave power; electron relaxation time; the relation of EPR linewidth and nuclear Larmor frequency...

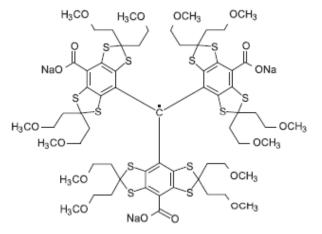
Doping with paramagnetic electrons:


- ~ 10^3 nuclei feeded by 1 unpaired electron from:
 - ▲ Chemically stable radical \rightarrow Solids
 - ▲ Radiation induced defects → Solids
- In the 1970 already 80-90% in protonated materials

Until 2003 40-50% in deuterated materials

The Trityl Radicals (Malmö Group(Sweden); General Electric)

- Important Progress for Deuterated Materials



Finland D36'(AH110355 deutero acid form)used for butanol-d10

Deuteron : up to 79% at 150mK/2.5T

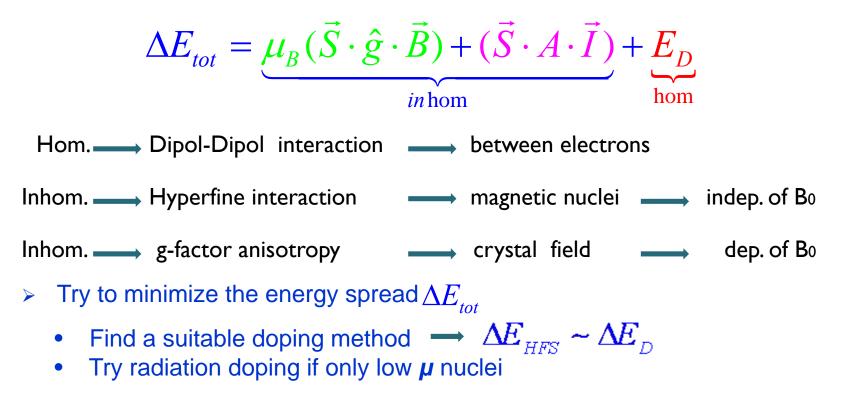
Ox063(AH100136 sodium salt)used for propandiol-d8

Deuteron: up to 81% at 150mK/2.5T

Ox063Me (AH 111 501 sodium salt) used for pyruvic acid

¹³C: up to 74% at 900mK/5.0T

W.Meyer, et al., NIM A 631 (2011) 1


St.Goertz et al.NIMA 526 (2004)43

Important parameter: EPR linewidth

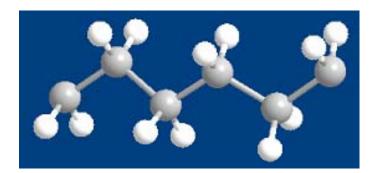
Zeeman Energy of a free electron

 $E_Z = -g_e \mu_B \vec{S} \cdot \vec{B}$

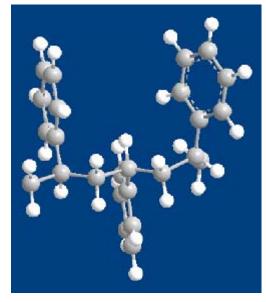
Contributions to the Electron Zeeman linewidth

Bochum measurements

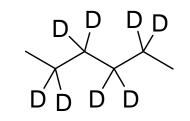
Material	Radical	∆g/ḡ [10 ^{–3}]	FWHM [mT]	at 2.5T P _{D,max} [%]
D-Butanol	EDBA	5.98 ± 0.03	12.30 ± 0.20	26
D-Butanol	TEMPO	3.61 ± 0.13	5.25 ± 0.15	34
D-Butanol	Porphyrexide	4.01 ± 0.15	5.20 ± 0.23	32
¹⁴ ND ₃	¹⁴ ND ₂	$\approx 2 \dots 3$	4.80 ± 0.20	44
¹⁵ ND ₃	¹⁵ ND ₂	$\approx 2 \dots 3$	3.95 ± 0.15	-
D-Butanol	Hydroxyalkyl	1.25 ± 0.04	3.10 ± 0.20	55
⁶ LiD	F-center	0.0	1.80 ± 0.01	57
D-Butanol	Finland D36	0.50 ± 0.01	1.28 ± 0.03	79
D-Propandiol	Finland H36	0.47 ± 0.01	0.97 ± 0.04	_
D-Propandiol	OX063	0.28 ± 0.01	0.86 ± 0.03	81


J. Heckmann, et al., Phys. Rev. B 74 (2006) 134418.

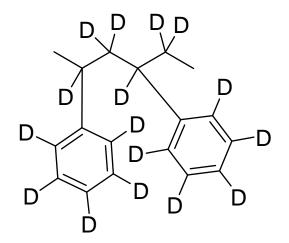
Result: The smaller the EPR linewidth, the higher the deuteron polarization value


Introduction to D-polymer materials

Poly(Ethylene-D4) CD₂



Styrene-D8, polymerized C8D8



dilution factor

$$f = \frac{8 \operatorname{from D}}{24 \operatorname{from C} + 8 \operatorname{from D}} = 0.25$$

$$f = \frac{16 \text{ from D}}{96 \text{ from C} + 16 \text{ from D}} = 0.14$$

Motivation to use D-polymer materials

Spin physics

- > Thin targets for scattering experiments at low energies
- Polarized scintillator targets

• Merits of CD₂, C₈D₈

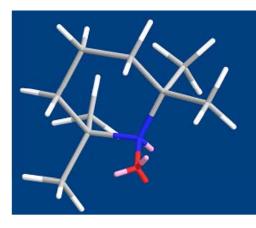
- 1. High purity of D 0.98, 0.99
- 2. D with spin 1 and C with spin 0
- 3. Easy formable to any thickness at room temperature

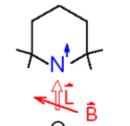
• Up to now the maximum polarizations of D-polymer

1. D-polyethylene **CD₂**: Paramagnetic Center---Irradiation

35% at 6.5T/1K

D.G.Crabb, Nucl. Instr. and Meth. A 526, 56 (2004)

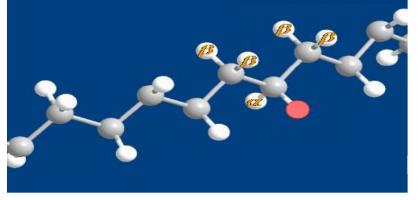

2. D-Polystyrene C₈D₈ : Paramagnetic Center---D-TEMPO

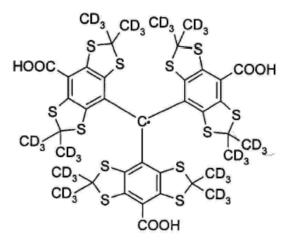

40% at 2.5 T/100mK

B.van den Brandt, et al., Nucl. Instr. and Meth. A 526, 53 (2004)

Doping methods for DNP

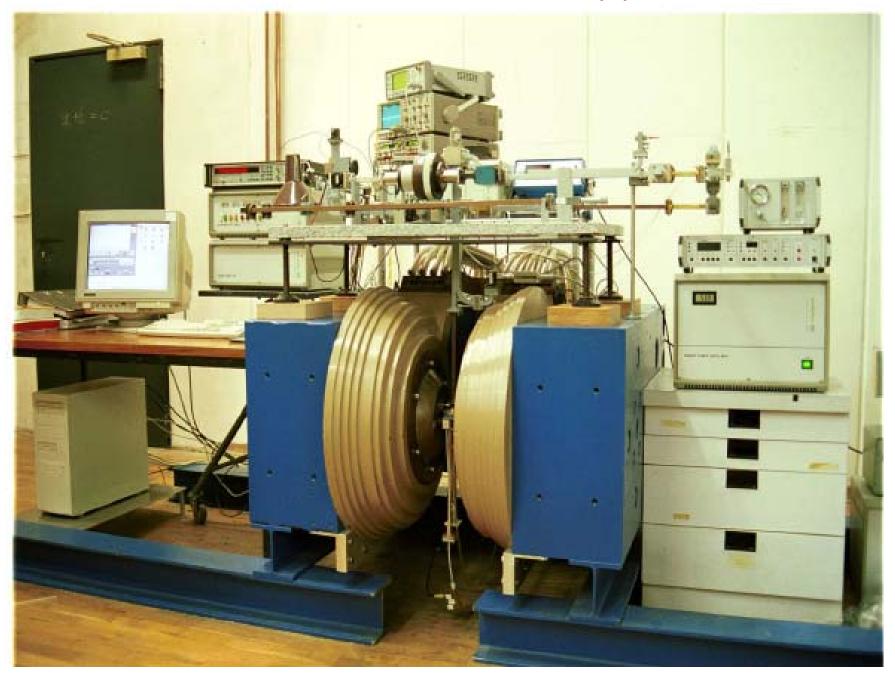
- Mechanism of Dynamic Nuclear Polarization
 Paramagnetic centers are needed
- Chemical (Tempo, Trityl radical) doping

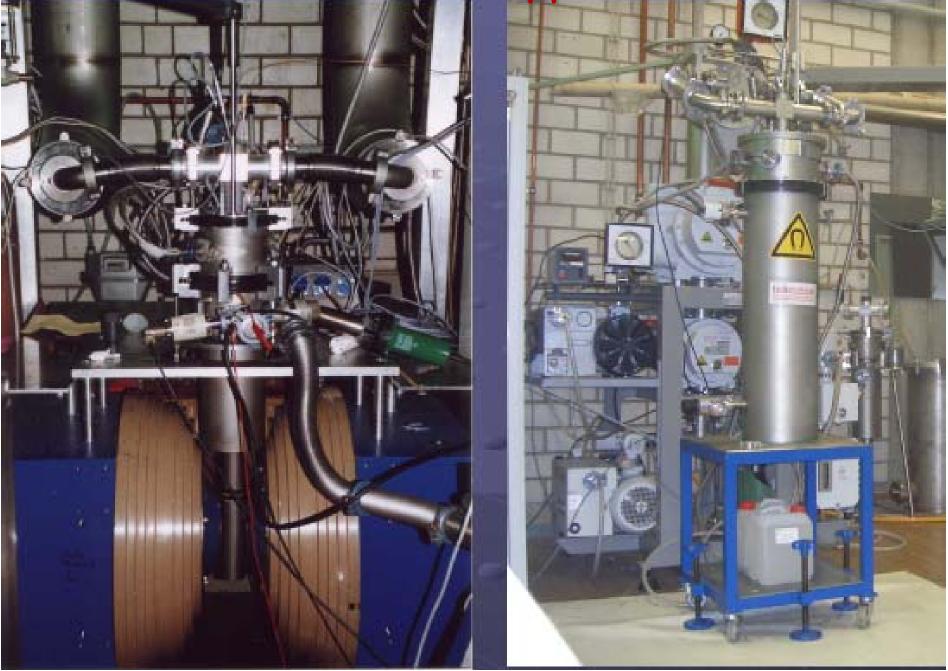




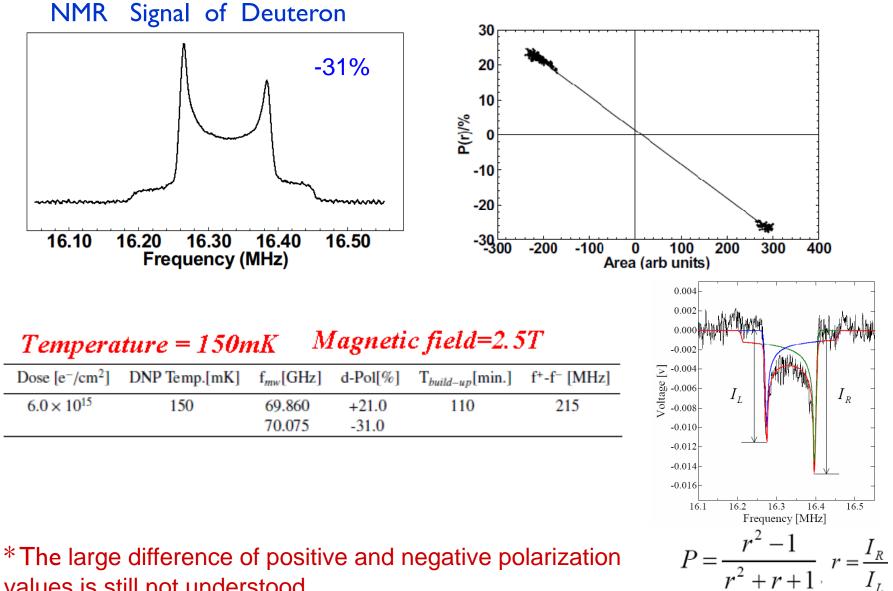
Melting point 36°C Boiling point 67°C

Tempo (stable free radical)

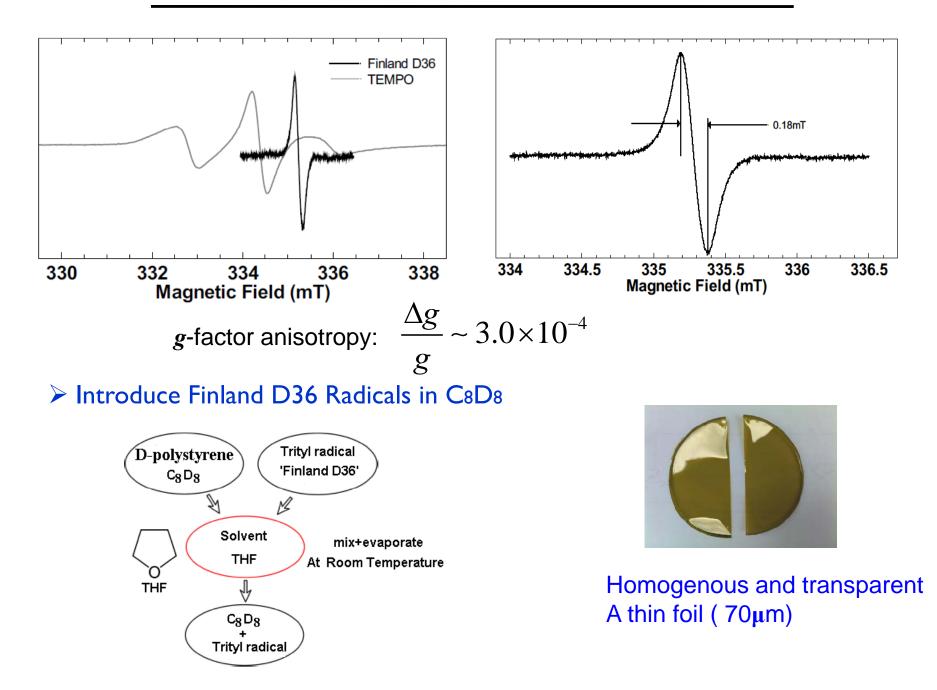

Irradiation with electron beam



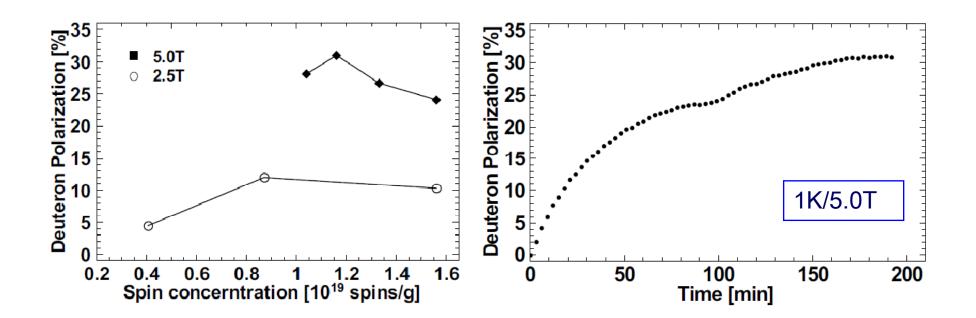
Trityl radicals Finland D36 (stable free radical)


The Bochum EPR Apparatus

The Bochum DNP Apparatus Magnet+cryostat

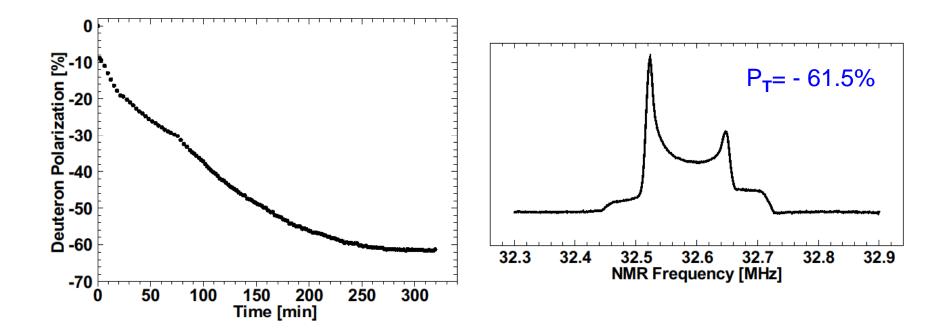


Polarization of radiation-doped CD₂



values is still not understood.

Preparation of trityl radical in C8D8



Polarization of Finland D36-doped C8D8

Spin conc. (spins/g)	Mag. Field (T)	T _{build-up} (min)	T _{1,d} (min)	Microwave Freq. (GHz)	d-pol. (%)	f ⁺ -f ⁻ (MHz)
0.87×10^{19}	2.5	76	80(T=1.01K)	69.877 69.933	+10.2	56
1.16 × 10 ¹⁹	5.0	47	139(T=0.99K)	139.736 139.828	+29.5 -31.0	92

Polarization of Finland D36-doped C8D8

Temperature = 400mK Magnetic field= 5.0 T

Sample	MW	d-pola.	T _{l,d}	T _{build-up}
	(GHz)	(%)	(min)	(min)
d-PS(98%-d) +Finland D36	139.723 139.825	+56.1 -61.5	863	100

f_{d,NMR}=32.6MHz

Li Wang, et al., NIM A 729 (2013) 36

Deuteron Polymer Polarizations

Material Doping	Magnetic field(T)		Temperature	$T_{I,d}$	FWHM-bolometric
	2.5	5			
	Polarization(%)			(min)	(mT)
CD₂ Irradiation (8.0 × 10 ¹⁵ e⁻/cm ³	+ 21.1 ²) - 31.1		150mK		
CD2 Tempo (3.0×10 ¹⁹ spins/cm	+ 11.1 ³) - 9.3		330mK		
C ₈ D ₈ Tempo (2.3×10 ¹⁹ spins/g	+ 7.3) - 7.7		1 K	12	6.73 <i>(</i> 2. <i>5T</i>)
C₀D₀ Trityl (1.16× 10 ¹⁹ spins/g	+ 11.8) - 12.3		1 K	24	1.87 <i>(</i> 2.5 <i>T</i>)
C₀D₀ Trityl (1.16×10 ¹⁹ spins/g)	+ 29.5 - 31.0	1 K	139	3.06 <i>(5.0T)</i>
C ₈ D ₈ Trityl (1.16×10 ¹⁹ spins/g)	- 61.5 + 56.1	400 mK	863	

Conclusion & Outlook

- Irradiated D-polyethylene with a relative high dilution factor can be polarized to about 30%- 35% at 2.5T/150mK.
- 2. Chemically doped D-polystyrene with trityl radical can be polarized to more than 30% at 5.0T/1K and more than 60% at 5.0T/400mK with potential to values higher than 80%. But the dilution factor is much lower than that of D-polyethylene.
- 3. A approach for D-polyethylene with trityl radical doping is needed.

Thanks for your attention!