Polarization Observables in Few-Nucleon Scattering

Stanisław Kistryn Jagiellonian University Kraków, Poland

OCTOBER 20-24, 2014. PEKING UNIVERSITY, BEIJING, CHINA

The 21st International Spin Physics Symposium

Nucleon-Nucleon Interaction Basis of Nuclear Physics

108 MeV/nucleon

Modern NN potentials are <u>in general</u> able to

- * reproduce properties of nuclear matter (eq. of state)
- * reproduce (roughly) binding energies of light nuclei
- reproduce global features of the bulk of the scattering observables in 2N and (partly) in 3N systems
- Three-nucleon system is the simplest nontrivial environment to test predictions of observables obtained on the basis of NN potential models

Few-Nucleon Systems - St. Kistryn UJ

nucleons

dơ/dΩ [mb/sr] 1 01

Three-Nucleon System Standard Interaction Models

Three-Nucleon Scattering at Medium Energies

 \Box Elastic: N + d \rightarrow N + d > Beams of p or d Analyzer > Various observables \Box Breakup: N + d \rightarrow N + N + N > Beams of p or d > Various observables Different effects to be traced > Comparisons between channels > Influences of 3NF > Coulomb force action ... and their interplay ! > Relativistic effects

Few-Nucleon Systems - St. Kistryn UJ

Experimental Tools of Few-Nucleon Physics

Few-Nucleon Systems - St. Kistryn UJ

3NF Effects Elastic Nucleon-Deuteron Scattering

Predictions of NN potentials with 3NF models better reproduce minimum of the d(N,N)d scattering c.s.

3NF Effects Elastic Nucleon-Deuteron Scattering

Few-Nucleon Systems - St. Kistryn UJ

Elastic Deuteron-Nucleon Scattering Beam Polarization

Elastic ¹H(\vec{d} ,pd) scattering – azimuthal (ϕ) distribution at selected polar (θ) angle, where T_{ii} 's are known

$$\sigma_p(\theta_p, \varphi_p) = \sigma_0(\theta_p) \cdot \left| 1 + \sqrt{3} \cdot iT_{11}(\theta_p) \cdot \frac{P_z}{P_z} \cdot \cos \varphi_p - \frac{\sqrt{3}}{2} \cdot T_{22}(\theta_p) \cdot \frac{P_{zz}}{P_{zz}} \cdot \cos 2 \varphi_p - \frac{\sqrt{2}}{4} \cdot T_{20}(\theta_p) \cdot \frac{P_{zz}}{P_{zz}} \cdot \cos 2 \varphi_p - \frac{\sqrt{2}}{4} \cdot T_{20}(\theta_p) \cdot \frac{P_{zz}}{P_{zz}} \cdot \cos 2 \varphi_p - \frac{\sqrt{2}}{4} \cdot \frac{1}{2} \cdot \frac{$$

Few-Nucleon Systems - St. Kistryn UJ

SPIN2014 Beijing, China; Oct. 24, 2014

Few-Nucleon Systems - St. Kistryn UJ

SPIN2014 Beijing, China; Oct. 24, 2014

Few-Nucleon Systems - St. Kistryn UJ

Few-Nucleon Systems - St. Kistryn UJ

SPIN2014 Beijing, China; Oct. 24, 2014

Effects small, located at extreme angles only !

Few-Nucleon Systems - St. Kistryn UJ

3N Systems Elastic N-d Scattering

- Substantial number of observables for the elastic scattering channel, allowing multidimensional studies of 3NF and other effects
- Only fraction has been measured really systematically (RIKEN/RCNP/IUCF/KVI)
- Not completely clear picture still much to explore !
- Complementary studies needed at much richer field: Nucleon-Deuteron Breakup

N-d Breakup Reaction

- Coverage of large phase-space regions
- Precise, rich sets of data needed for systematic studies of various effects
- Specific configurations sensitive to different dynamical effects

¹H(d,pp)n measured: directions and energies of two protons, i.e. θ_1, ϕ_1, E_1 θ_2, ϕ_2, E_2

Few-Nucleon Systems - St. Kistryn UJ

¹H(d,pp)n Measurements at 130 MeV Cross Section and Analyzing Power Results

Few-Nucleon Systems - St. Kistryn UJ

¹H(d,pp)n Measurement at 130 MeV Cross Section Results – Examples

Few-Nucleon Systems - St. Kistryn UJ

SPIN2014 Beijing, China; Oct. 24, 2014

¹H(d,pp)n Measurement at 130 MeV Breakup Analyzing Powers – Extraction

Azimuthal (ϕ) distribution at every kinematical point $(\theta_1, \theta_2, \varphi_{12}, S) \equiv (\varsigma', \varphi_{12})$, with known P_z and P_{zz} of rate asymmetry $f_P(\varsigma', \varphi_{12}, \Phi)$ for pol. and unpol.

$$f_{p}(\varsigma', \varphi_{12}, \phi) = \begin{bmatrix} P_{z} \cdot \left(-\frac{3}{2}\sin\phi \cdot A_{x} + \frac{3}{2}\cos\phi \cdot A_{y}\right) + P_{zz} \cdot \left(-\frac{1}{2}\sin 2\phi \cdot A_{xy}\right) + P_{zz} \cdot \left(-\frac{1}{2}\sin^{2}\phi \cdot A_{xy}\right) + P_{zz} \cdot \left(\frac{1}{2}\sin^{2}\phi \cdot A_{xx} + \frac{1}{2}\cos^{2}\phi \cdot A_{yy}\right) \end{bmatrix}$$

atataa

¹H(d,pp)n Measurement at 130 MeV Analyzing Power Results – Parity Test of Data

Few-Nucleon Systems - St. Kistryn UJ

SPIN2014 Beijing, China; Oct. 24, 2014

¹H(d,pp)n Measurement at 130 MeV Analyzing Power Results

²H(p,pp)n Breakup Reaction Analyzing Powers vs. Cross Sections

¹H(d,pp)n Breakup Reaction Polarization Transfer Coefficients

 $E_{d} = 270 \text{ MeV}$ $\theta_{1}, \theta_{2} = 28^{\circ} - 32^{\circ}, \ \Phi_{12} = 180^{\circ}$ $\frac{1}{2} = 180 \text{ deg}$

Double-scattering experiment for breakup !

K. Sekiguchi et al. Phys. Rev. C 78 (2009) 054008

Few-Nucleon Systems - St. Kistryn UJ

²H(p,pp)n vs. ²H(p,d)p Spin-Isospin Selectivity

 $E_{p} = 190 \text{ MeV}$

 $\theta = 14^\circ - 30^\circ$

H. Mardanpour *et al.*, Phys. Lett. B **687** (2010) 149

Few-Nucleon Systems - St. Kistryn UJ

3N Systems N-d Breakup Reaction

- Variety of observables and configurations (wide phase space) for the breakup reaction, field of tests for different dynamic ingredients
- Sets (a few only) of rich, systematic and precise data are (at last) available
- □ Picture very ambiguous still much to be learnt !
- Comparisons between beam energies need of new variables

N-d Breakup Reaction Invariant Variables

Defining configurations in terms of angles and energies makes comparisons of experiments performed at different energies difficult.

Using 4-momenta we can define:

$$s_{pp} = (p_{p1} + p_{p2})^{2}$$

$$s_{pn} = (p_{p1} + p_{n})^{2}$$

$$t_{n} = (p_{d} / 2 - p_{n})^{2}$$

$$t_{p} = (p_{p} - p_{p2})^{2}$$

More intuitively:

 $E_{rel}^{pp} = \sqrt{s_{pp}} - 2m_p$ $E_{rel}^{pn} = \sqrt{s_{pn}} - m_p - m_n$ $E_{tr}^{p} = \frac{-t_p}{2m_p}$ $E_{tr}^{n} = \frac{-t_n}{2m_n}$ $E_{tr}^{n} = \frac{-t_n}{2m_n}$ $E_{tr}^{n} = 0$ $E_{tr}^{pn} = 0$ $E_{tr}^{pn} = 0$

Few-Nucleon Systems - St. Kistryn UJ

3N Systems N-d Breakup Reaction

- Variety of observables and configurations (wide phase space) for the breakup reaction, field of tests for different dynamic ingredients
- Sets (a few only) of rich, systematic and precise data are (at last) available
- □ Picture very ambiguous still much to be learnt !
- Comparisons between beam energies need of new variables
- Are we ready for next step: Four-Nucleon System studies ?

Few-Nucleon Systems - St. Kistryn UJ

200

SPIN2014 Beijing, China; Oct. 24, 2014

Few-Nucleon Systems Summary

1073 2014) Si 59 ^{Syst.} 48 (2010) Stephan. Sagara, Few-Body Kalantar *<u>Vistryn</u>* Ż

- Rich, systematic and precise sets of data available (elastic scattering - many, breakup - a few)
 basis for comparing different approaches which predict the 3N system observables
- Showed significant 3NF effects
- □ Found large influence of the Coulomb force on c.s.
- Relativistic effects to be studied in detail
- Interplay of different ingredients of 3N system dynamics inspection started !
 - $\hfill\square$ Discrepancies \rightarrow hints of imperfections in 3NF models
- General picture not quite clear needed studies to provide evidences of trends in deficiencies

Few-Nucleon Studies Outlook & Wishes

Prospects for further results:

> Evaluating the data accumulated in several experiments at KVI and COSY

> More measurements:

- > Japan: RIKEN, RCNP, RIBF,
- > Projects @ COSY Jülich
- > BINA @ IFJ PAN Cracow

Personal, surely incomplete view Awaited theoretical achievements:

- > 3NF at $N^{3}LO$ (close ahead...)
- > ChPT with Δ (work in progress...)
- Realistic potentials with Coulomb
- Relativistic potentials with 3NF
- > Rigorous calculations for 4N system (dreamed for !)

Few-Nucleon Systems - St. Kistryn UJ

Few-Body Systems Remain Attractive !

