New p+p and p+A Physics Opportunities with the Forward sPHENIX Upgrade at RHIC

Ming Liu

Los Alamos National Laboratory
(for the PHENIX Collaboration)
Relativistic Heavy Ion Collider at BNL in operation since 2000
RHIC Highlights
Where to go next?

• Discovery of Quark Gluon Plasma (QGP)
 – Strongly interacting QGP
 – Gluon saturation at small-x, CGC etc

• Surprises continue from spin program
 – “small” gluon spin contribution
 – “large” transverse spin asymmetry

• New questions arose:
 – The nature of strongly interacting QGP
 --> super-PHENIX
 – Nucleon 3-D structure, nPDFs and QCD dynamics
 --> Forward sPHENIX -> eRHIC Detector
Brookhaven Lab Proposed 10 Year Plan

<table>
<thead>
<tr>
<th>Years</th>
<th>Beam Species and Energies</th>
<th>Science Goals</th>
<th>New Systems Commissioned</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>15 GeV Au+Au, 200 GeV Au+Au</td>
<td>Heavy flavor flow, energy loss, thermalization, etc. Quarkonium studies, QCD critical point search</td>
<td>Electron lenses, 56 MHz SRF, STAR HFT, STAR MTD</td>
</tr>
<tr>
<td>2015-16</td>
<td>p+p at 200 GeV, p+Au, d+Au, 3He+Au at 200 GeV, High statistics Au+Au</td>
<td>Extract $\eta/s(T) +$ constrain initial quantum fluctuations, More heavy flavor studies, Sphaleron tests, Transverse spin physics</td>
<td>PHENIX MPC-EX, Coherent e-cooling test</td>
</tr>
<tr>
<td>2017</td>
<td>No Run</td>
<td></td>
<td>Low energy e-cooling upgrade</td>
</tr>
<tr>
<td>2018-19</td>
<td>5-20 GeV Au+Au (BES-2)</td>
<td>Search for QCD critical point and onset of deconfinement</td>
<td>STAR ITPC upgrade, Partial commissioning of sPHENIX (in 2019)</td>
</tr>
<tr>
<td>2020</td>
<td>No Run</td>
<td></td>
<td>Complete sPHENIX installation, STAR forward upgrades</td>
</tr>
<tr>
<td>2021-22</td>
<td>Long 200 GeV Au+Au with upgraded detectors p+p, p/d+Au at 200 GeV</td>
<td>Jet, di-jet, γ-jet probes of parton transport and energy loss mechanism, Color screening for different quarkonia</td>
<td>![PHENIX Logo]</td>
</tr>
<tr>
<td>2023-24</td>
<td>No Runs</td>
<td></td>
<td>Transition to eRHIC</td>
</tr>
</tbody>
</table>

New Idea: Forward sPHENIX Proposal
Forward sPHENIX Proposal
(An upgrade path that harvests \textbf{pp, pA and AA} physics and leads to an EIC era)

- Transverse Spin and CNM Physics Centric in the Forward Rapidity
- Significant novel effects observed but not fully understood!
Physics Motivations

Novel Transverse Spin Phenomena
- Origins of large transverse spin asymmetry
- Universality and factorization, p+p v.s. SIDIS
- Nucleon Structure, QCD dynamics and evolution

Cold Nuclear Matter Effects
- Modification of PDFs inside nucleus
- Jet fragmentation and parton energy loss
Possible Origins of Large Transverse SSAs

Sivers mechanism:
correlation between proton spin & parton k_T

Collins mechanism:
Transversity × spin-dep fragmentation

\begin{align*}
A_N \mu & \overline{f}_{1T}^q(x, k_{\perp}^2) \times D_q^h(z) \\
A_N \mu & \delta q(x) \times H_1^\perp(z_2, \vec{k}_{\perp}^2)
\end{align*}

Collinear Twist-3: quark-gluon/gluon-gluon correlation
TMD and Collinear Twist-3

\[Q \gg Q_T \gtrsim \Lambda_{QCD} \]

Collinear/twist-3

\[Q, Q_T \gg \Lambda_{QCD} \]
Test the Universality of QCD Descriptions

Are TMD and Twist-3 really consistent?

\[gT_{q,F}(x, x) = - \int d^2 k_\perp \frac{|k_\perp|^2}{M} f_{1T}^{q}(x, k_\perp^2) \big|_{\text{SIDIS}} \]

Kang, Qiu, Vogelsang, Yuan (2011)

\[p + p \uparrow \rightarrow \pi(p_T) + X \]

\[\sin(\theta_h - \phi_s) \]

\[A_{\text{UT}} \]

\[x, z, p_T (\text{GeV}) \]
A Surprise: A_N Sign Mismatch?

First attempt to check the “Universality of QCD description of TSSA”

- Twist-3 ($p+p$) v.s. TMD Sivers (SIDIS)

Very active investigations:
- Collins
- Node in Sivers TMD functions
- Twist-3 …
- etc.

Many recent papers and presentations

Kanazawa, Koike, Metz and Pitonyak (2014)

Need new experimental data to test models
Access “Sivers” and “Collins” Asymmetries with Jets

\[
\frac{E_j d\sigma^{A(S_A)B\rightarrow jet+\pi+X}}{d^3 p_j dz d^2 k_{\perp \pi}} = \sum_{a,b,c,d,\{\lambda\}} \int \frac{dx_a dx_b}{16\pi^2 x_a x_b s} d^2 k_{\perp a} \\
\times d^2 k_{\perp b} \rho_{\lambda_a \lambda_a'}^{A/A_S} \hat{f}_{a/A_S} (x_a, k_{\perp a}) \rho_{\lambda_b \lambda_b'}^{B/B} \hat{f}_{b/B} (x_b, k_{\perp b}) \\
\times \hat{M}_{\lambda_c, \lambda_c'}^{\lambda_d, \lambda_d'} \hat{M}^*_{\lambda_c', \lambda_d', \lambda_a, \lambda_b} \delta(\hat{s} + \hat{i} + \hat{u}) \hat{D}_{\lambda_c, \lambda_c'} (z, k_{\perp \pi}).
\]

Experimental variables:
- Jet P_j, x_F
- Hadrons, Charge and PID
- Beam polarization

Feng Yuan, PRL 100, 032003 (2008)
Umberto D’Alesio et al PRD 83 034021 (2011)
Forward sPHENIX
-1 < eta < 4

- Clearly isolate “Sivers” and “Collins”
- CNM physics, nPDFs and dE/dX
Jet Production Rates @NLO
200GeV p+p: Lumi = 50pb⁻¹

\[X_1 \sim \frac{E_{\text{jet}}}{100} \]
Access high \(-x\)

\[Q \sim pT \]
Jet Quark-Flavor Tagging with Charged Hadrons

Jet $+ h^+(z>0.5)$ favors u-quark

Jet $+ h^-(z>0.5)$ favors d-quark
Jet TSSA: Test Process Dependence

- Change of sign in flavor-tagged Jet TSSA

Naïve DIS Fit Sivers

Included 1) process dependence and 2) Q^2 evolution
Drell-Yan TSSA: Test Sign Change

- Fundamental test of pQCD factorization and gauge-link formalism
 - Theoretically clean
 - Experimentally challenging
 - TMD (pp) vs TMD (SIDID)

\[\Delta^N f_{q/h^\uparrow}^{\text{SIDIS}}(x, k_\perp) = -\Delta^N f_{q/h^\uparrow}^{\text{DY}}(x, k_\perp) \]

Kang and Qiu, PRD 84 054020
Exchevarria et. al., arXiv 1401.5078
Hadron Collins Asymmetry in Jets

- Test universality of Collins FF
- SIDIS vs pp
 - TMD
 - Twist-3

Jet + h^{+/−} Collins Asymmetry: A_N vs Z

10 GeV < Jet E < 100 GeV

Collins asymmetry on proton

charged hadrons - published 2007 & 2010 data results

very good agreement between the two independent data sets
combined 2007 – 2010 results

• precise measurements
• clear signal at x > 0.3, with opposite sign for h+ and h−
p+A Physics: from Nucleon to Nucleus

Are parton distributions modified significantly inside nucleus?

- **(Anti)Shadowing**
 - Gluon saturation/CGC
 - EMC etc.
- **Hadronization**
- **Energy loss dE/dx**
Forward J/Psi and Drell-Yan: Small-x Saturation

DY challenges:
- DY background rejection
- Study in progress

Other channels:
- Hadron, jet, J/Psi etc.

\[R = \frac{\sigma(p+A)}{A \times \sigma(p+p)} \]
Polarized p+A

Forward pi0 TSSA to probe saturation scale

Run 2015: first transverse p+A @RHIC!

See X. Jiang's PHENIX MPC-EX talk (Tue)
Outlook: PHENIX -> *Forward/sPHENIX-*->eRHIC

<table>
<thead>
<tr>
<th>Current PHENIX</th>
<th>Forward sPHENIX</th>
<th>An EIC detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Current PHENIX as discussed in many previous talks</td>
<td>• sPHENIX: comprehensive central upgrade based on BaBar magnet</td>
<td>• Path of PHENIX upgrade leads to a capable EIC detector</td>
</tr>
<tr>
<td>• 14y+ work</td>
<td>• fsPHENIX: forward tracking, HCal and muon ID</td>
<td>• Large coverage of tracking, calorimetry and PID</td>
</tr>
<tr>
<td>• 100+M$ investment</td>
<td>• Key tests of theoretical frameworks for transverse spin and CNM</td>
<td>• New collaboration/new ideas</td>
</tr>
<tr>
<td>• 130+ published papers to date</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Last run in this form 2016</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

~2000 2017→2020 ~2025

RHIC: A+A, polarized p+p, polarized p+A
eRHIC: e+p, e+A

10/22/14 Ming Liu @SPIN2014
backup
Flavor Tagged Jet Asymmetry

- Jet and leading h^+ and h^-
 - Forward jets: $\eta = [1.7, 3.3]$

Why Jet A_N from AnDY is so small?
Cancellation of u and d quarks' Sivers asymmetry?

Directly use Sivers function from SIDIS fit
Tag Quark Flavor with Leading Charged Hadrons

• @Z = 0.5

\[
\frac{\sigma_q}{\sigma_{all}} = e_f^2 q_f \cdot D_f^n / \sum e_i^2 q_i \cdot D_i^n
\]

DSS FF

\[
D_{\pi^+} = D_{\pi^+} = N \cdot D_{\pi^+}
\]

\[
D_{\pi^+} = D_{\pi^+} = N \cdot D_{\pi^+}
\]

\[
D_{\pi^+} = D_{\pi^+} = N \cdot D_{\pi^+}
\]

Proton π+

Proton π−

Proton K+

Proton K−

\(Q^2 = 4.0 \text{ GeV}^2\)

\(Z_h = 0.5\)

\(u \quad d \quad s \quad \bar{u} \quad \bar{d} \quad \bar{s}\)

Ming Liu @SPIN2014
Possible Resolutions?

“Collins”? Node in “Sivers”? Etc.

A_N from twist-3 fragmentation functions
(Kanazawa, Koike, Metz, Pitoniak, arXiv:1404.1033)

Sarah Sivers and Collins in p+p! fsPHENIX!

Need new direct measurements of
Sivers and Collins in p+p! fsPHENIX!

SIDIS/TMD

Node in Sivers Func.

pp/Twist-3

Kang, Prokudin PRD (2012)
Collins Asymmetry inside Jets

- Significant non-zero spin asymmetry observed @RHIC
Energy Loss and Hadronization in p+A

\[R = \frac{\sigma(p+A)}{A \times \sigma(p+p)} \]

Gluon shadowing

\[\rho(A) \rightarrow J/\psi + X \]

\[dE/dx \]

Need to isolate \(dE/dx \) from other effects => E906 @Fermilab!
Could “A” affect Collins Fragmentation Function?

- Unpolarized quark fragmentation “is modified” in SIDIS
 - hadronization

- How about Collins polarized fragmentation functions in p+A?
 - Hadronization in CGC?

Key observables:
- Collins A_N asymmetry inside a Jet in p+A
- Centrality dependence, (pT, z, PID...)
- NO polarized e+“A”, unique @RHIC
Conceptual f/s/ePHENIX Design
eRHIC Physics

- **Gluon spin structure**
 - Process: Inclusive DIS
 - Observable: scattered electron measurements
 - Detector: EMCal + tracking
- **Strange spin, TMD, Propagation of hadron in nucleon**
 - Process: semi-inclusive DIS
 - Observable: DIS + hadron with ID
 - Detector: DIS + h-PID for -1<eta<4
- **3D tomography of proton**
 - Process: exclusive production
 - Observable: Electron, photon, proton, exclusiveness
 - Detector: tracking, EMCal, Roman pots
- **Saturation physics**
 - Process: diffractive production
 - Observable: rapidity gap
 - Detector: Hcal in -1<eta<5
- **Not included in stage-I**
 - Heavy flavor production
 - Electro-weak physics