Hadron Structure from the Drell-Yan Process

- Probing Hadron Structure with Drell-Yan
- Proton induced Drell-Yan
- Pion induced DY
- DY with polarized protons
- Future Experiments

Many thanks for their input to Caroline Riedl, and Jen-Chieh Peng

Matthias Grosse Perdekamp, UIUC

Hadron Structure from the Drell-Yan Process, PKU, October 19th, 2014

Probing the Quark Structure of Hadrons with Electro Weak Probes

Complementarity Between DIS and Drell-Yan

Both DIS and Drell-Yan processes are tools for probing the quark and anti-quark structure of hadrons. The data stretch over a wide range in Q² and test evolution.

Lepton-pair production provides unique information on parton distributions

 $p + W \rightarrow \mu^+ \mu^- X$ 800 GeV/c $\pi^- + W \rightarrow \mu^+ \mu^- X$ $\overline{p} + p \rightarrow l^+ l^- X$ 194 GeV/c 1.8 TeV

Probe antiquark distribution in nucleon

Probe antiquark distribution in pion

Probe antiquark distributions in antiproton

Unique features of D-Y: antiquarks, unstable hadrons... 7

DY p_T Dependence for Different Q^2

Important input for the phenomenology of transverse momentum dependent quark distributions (TMDs) and their evolution.

Hadron Structure Explored Through Drell-Yan Scattering

- Cleanest hard hadron-hadron scattering process
- But: experimentally challenging: small cross section. $\frac{\mathrm{d}\sigma}{\mathrm{d}m_{\mu\mu}} \approx \frac{10^{-32}}{m_{\mu\mu}^5} \cdot \frac{\mathrm{cm}^2}{\mathrm{GeV}^2}$
- Important role in studying quark structure in hadrons: nucleons
 - Parton Distribution Functions (PDFs) in nuclei
 - PDFs in mesons
- Provides access to transverse-momentum dependent PDFs (TMDs)
- Interesting current focus: DY experiments with polarized protons
 - ➔ complete understanding of the origin of large single transverse spin asymmetries in SIDIS and pp

Milestone: measurement of sign switch between DY and SIDS for Sivers asymmetry

Typical Fixed Target Muon Drell-Yan Experiment

From the review: I. R. Kenyon, The Drell-Yan Process, Rep. Pos. Phys. Vol 45 (1982)

Selected Past Drell-Yan Experiments

Meson-Induced Drell-Yan

Spin 2014, PKU, October 19, 2014

Proton Induced DY as Probe of Sea Quark Distributions

Pion-Induced Drell-Yan Probes Valence Quark Distibution in Target:

- Proton-induced DY needs to generate the di-lepton from sea-quark object with small x.
- Valence anti-u quark in the pion: allows to create large-mass dileptons with valence uquark in the target!
- Pions are complementary probe to probe
 valence structure
 - nuclear effects at high x
 - meson structure not accessible in DIS
- Flavor dependence: meson quark composition pics specific q-flavor in the target

Recent review: arXiv:1306.3971 W.-C. Chang and D. Dutta, The pionic Drell-Yan process: a brief survey

sensitive to the valence quark of the nucleon target

(anti-d d annihilation suppressed)

E866 Isospin Symmetry Broken in the Anti-Quark Sea

Inclusion of E866 σ^{pd}/σ^{pp} into global fits: dramatic impact of sea-quark dis. from QCD analysis of hard scattering data!

- Origin of sea quarks? $g \rightarrow q \overline{q}$ should naively give symmetric $q \overline{q}$.
- Non-perturbative contributions to sea-quark distributions:
 - meson-cloud model
 - chiral perturbation theory
 - intrinsic quark sea

Reviews: Kumano: hep-ph/9702367; G.T. Garvey, J.-C. Peng: nucl-ex/0109010

Current Fermilab E906/SeaQuest

Will extend sea-quark measurements to larger x by using 120 GeV protons from Fermilab Main Injector.

Nuclear Effects in Nucleon Structure

Modification of parton distributions in nuclei?

F₂ in DIS: chargeweighted sum of quarks and anti-quarks. Are there nuclear effects for sea quarks?

Drell-Yan !

Flavor-Dependent EMC Effect in Pion-Induced DY

- Flavor-dependent modification of quark distributions in the nuclear medium?
- Distinguish between different nuclear models
- Cloet, Bentz, Thomas (CBT) model:
- isospin dependence of nuclear forces affects u- and d-quarks differently

Dutta, Peng, Cloet, Gaskell, arXiv:1007.3916

Experimental possibilities in p-Pb at LHC ?!

Drell-Yan at Highest-Energy pp(\bar{p}) **Colliders**

Di-muon production: $pp\overline{(p)} \rightarrow \mu + \mu^{-}X$

- LHC & Tevatron: Drell-Yan widely explored
 - Major background in searches.
- Constraints for PDFs
- Probe for new physics/precision test of SM: measurement of AFB

Impact of Charged Current Ratio on PDFs

Input for constraining u/d and anti-quark distributions in PDF fits

Hadron Structure from Drell-Yan

Spin 2014, PKU, October 19, 2014

Measurement of Forward-Backward Asymmetry in DY in CMS

Weak mixing angle from multi-variant analysis of DY production vs m, y, $\cos\theta$ to 0.1%:

 $\sin^2 \theta_{\rm eff} = 0.2287 \pm 0.0020 \,(\text{stat.}) \pm 0.0025 \,(\text{syst.})$

Phys. Rev. D 84, 112002 (2011)

Hadron Structure from Drell-Yan

Spin 2014, PKU, October 19, 2014

Angular Dependence of the (Spin-Integrated) DY Cross Section

Lam-Tung relation

 $1 - \lambda = 2\nu$

C.S. Lam and W.K. Tung, PRD 18 (1978) 2447

- Reflects spin-1/2 nature of quarks (DIS-Callan-Gross-like)
- Widely insensitive to QCD corrections
- "unique opportunity to test the QCD-improved quark-parton model"

Lam-Tung in Proton- and Pion-Induced DY

Proton-induced Drell-Yan (E866)

- consistent with LT-relation
- no cos(2Φ) dependence
- no p⊤ dependence

Pion-induced Drell-Yan (NA10, E615)

- violates LT-relation
 - (independent of nucleus no nuclear effect)
- large $cos(2\Phi)$ dependence
- strong with p_{T}

Explanations

- Boer-Mulders (BM) TMD → quark transverse spin correlated with quark transverse momentum ?
- higher twist
- spin effects in QCD vaccum
- Pionic DY probes BM (valence), target=proton
 Protonic DY probes BM (sea), target=proton
 - BM (sea) small compared to BM (valence)
- Drell-Yan may be sensitive to spin-transverse momentum correlations!

.5

p_T (GeV)

0.5

2.5

3.5

3

TMDs in Spin-Dependent Drell-Yan

Transversity nucleon quark $ec{S}^N_\perp$ \vec{s} transverse Correlations between transverse transverse spin spin nucleon spin, quark spin and quark transverse momentum **Boer-Sivers Mulders** \vec{k}_{\perp}^{q} function function quark transverse momentum

- Are Sivers function and Boer-Mulders **universal**?
 - Observed to be clearly different from zero in SIDIS.
 - Expect **sign switch** of these time-reversal-odd TMDs in <u>DY</u> wrt <u>SIDIS</u>: fundamental QCD prediction due to gauge invariance
- Experimental verification: crucial test of non-perturbative QCD and TMD physics
 origin of large SSAs?
 - validity of QCD factorization?

Sign Change of Sivers- and Boer-Mulders Functions Between SIDIS and DY

Sivers
$$f_{1T}^{\perp}(x, \mathbf{k}_T) \Big|_{SIDIS} = -f_{1T}^{\perp}(x, \mathbf{k}_T) \Big|_{DY}$$

Boer-Mulders $h_1^{\perp}(x, \mathbf{k}_T) \Big|_{SIDIS} = -h_1^{\perp}(x, \mathbf{k}_T) \Big|_{DY}$

Sign reversal between polarized SIDIS and Drell-Yan is to be tested!

TEST proposed process dependence of TMD pdfs!

Predictions for the size of asymmetries depend on Q2 of the experiment and knowledge of TMD evolution

Hadron Structure from Drell-Yan

Spin 2014, PKU, October 19, 2014

Proposed future Polarized Drell-Yan Experiments

proton-proton

- SeaQuest (Fermilab)
- RHIC (Brookhaven)
- J-PARC (KEK)
- IHEP (Protvino)
- JINR (Dubna)

anti(p)-proton

- FAIR (GSI)

pion-nucleon

- COMPASS (CERN)

A_N for direct-photon, DY, W and Z⁰ from STAR at RHIC Z. Kang et al. arXiv:1401.5078v1 $_{z}$ 001

From A. Vossen's talk at Transversity 2014

у

STAR $A_N(W^+)$: 2011data vs 2016 Projections

From A. Vossen's talk at Transversity 2014

The COMPASS Spectrometer

Kinematics $4 < M_{uu} < 9 \text{ GeV/c}^2$ at COMPASS

COMPASS DY Statistical Precision

 $4 < M_{\mu\mu} < 9~GeV/c^2$

Details will be given in presentation by Bakur Parsamyan, Parallel VIII, Friday at 11am

Additional info on DY with unpolarized targets in COMPASS will be given by Wen-Chen Chang, Parallel, VIII, Friday at 11.40

Hadron Structure from Drell-Yan

Spin 2014, PKU, October 19, 2014

Summary

Large body of Drell-Yan data available constraining:

- o nucleon and meson pdfs
- o flavor dependence
- o nuclear effects in hadron structure
- o TMD evolution through p_T dependence
- o spin k_T correlations in hadrons

Future experiments are being prepared with polarized Targets and polarized beams to study single transverse spin asymmetries and the related spin dependent TMD distribution functions of the hadron