### TMD evolution for Collins asymmetries in e<sup>+</sup>e<sup>-</sup> annihilation and SIDIS

## Peng Sun LBNL

in collaboration with Kang, Prokudin and Yuan

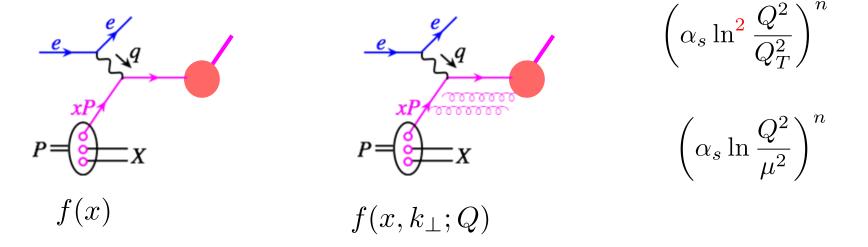
#### arXiv:1410.4877

## Outlines

Energy evolution in TMD factorization

# Collins asymmetry in e<sup>+</sup>e<sup>-</sup> annihilation and SIDIS

Summary


## Why do we need QCD evolution?

TMD factorization is applicable in case two different scales are observed in processes such as SIDIS, Drell-Yan, W/Z production in hadron-hadron collisions. Kinematical regime:  $Q_T \ll Q$ 

For SIDIS  $Q_T$  is transverse momentum of final parton

And Q is the invariant mass of virtual photon

Double and Single logarithms will appear order by order in perturbative calculations



#### TMD evolution in TMD parton distributions

With CSS evolution equation, evolution starts from  $\mu_b = c/b, \ c = 2e^{-\gamma_E}$ 

$$\tilde{f}(x,b;Q) = \tilde{f}(x,b;\mu_b)e^{-S_{pert}(b)}$$

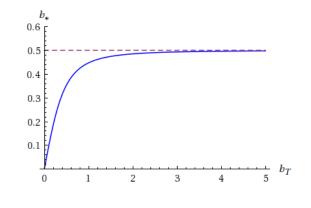
where

$$\tilde{f}(x,b;Q) = \int d^2k_{\perp}e^{-ik_{\perp}b}f(x,k_{\perp};Q)$$

$$S^{PT}(b) = \int_{\mu_b}^{Q} \frac{d\mu}{\mu} \left(A \ln \frac{Q^2}{\mu^2} + B\right)$$

Perturbative Sudakov factor

$$A = \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n A^{(n)} \qquad B = \sum_{n=1}^{\infty} \left(\frac{\alpha_s}{\pi}\right)^n B^{(n)}$$


Calculation is perturbative, valid only in region  $b \ll 1/\Lambda_{QCD}$ 

Fourier transform in momentum space involves non-perturbative region  $f(x, k + O) = \int_{-\infty}^{\infty} \frac{bdb}{dt} I_0(k + b) \tilde{f}(x, b; O)$ 

$$f(x,k_{\perp};Q) = \int_0^{\infty} \frac{\partial a \partial}{2\pi} J_0(k_{\perp}b) \tilde{f}(x,b;Q)$$

Non perturbative region needs to be treated. Common method b\* prescription

$$b_* = \frac{b}{\sqrt{1 + b^2/b_{max}^2}}$$



$$\tilde{f}(x,b;Q) = \tilde{f}(x,b_*;c/b_*)e^{-S_{pert}(b_*)}e^{-S_{NP}(b)}$$

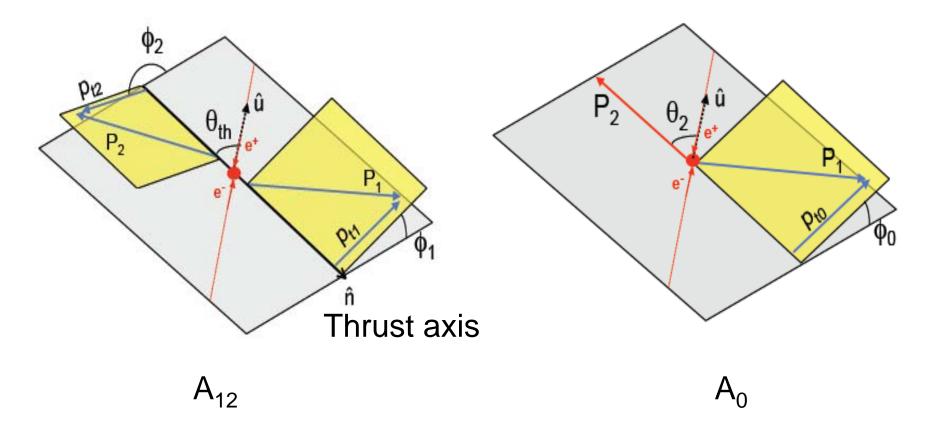
Non perturbative Sudakov factor

$$S_{\rm NP}^{\rm SIDIS}(Q,b) = g_2 \ln\left(\frac{b}{b_*}\right) \ln\left(\frac{Q}{Q_0}\right) + \left(\frac{g_1}{2} + g_3\left(\frac{x_0}{x_B}\right)^{\lambda} + \frac{g_h}{z_h^2}\right) b^2$$

A new non-perturabtive Sudakov factor is used. Where  $x_0=0.01$ ,  $Q_0^2=2.4$ GeV<sup>2</sup>, and  $\lambda = 0.2$ 

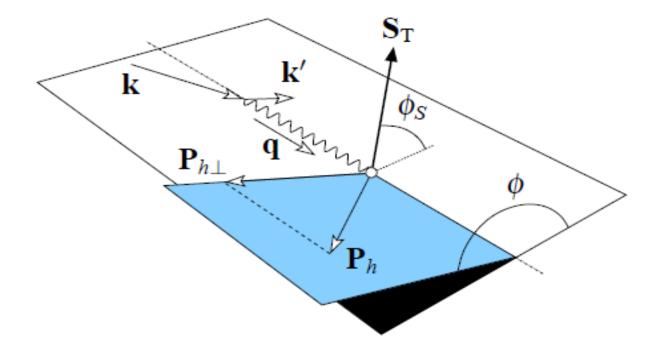
 $g_1$ ,  $g_2$  and  $g_3$  are free parameters, from the fitting of Drell-Yan processes, and  $g_h$  is from SIDIS

In our fit, we choose  $b_{max}=1.5 \text{GeV}^{-1}$ 


$$\tilde{f}^{j}(x,b_{*};c/b_{*}) = \sum_{j'=q,g} \int_{x}^{1} \frac{d\hat{x}}{\hat{x}} C_{j/j'} \left(\frac{x}{\hat{x}},b_{*};c/b_{*}\right) f^{j'}(x;c/b_{*})$$

$$C = \sum_{n=1}^{\infty} \left(\frac{\alpha_{s}}{\pi}\right)^{n} C^{(n)} \quad \text{Wilson coefficient} \qquad \text{Collinear PDF}$$

transversity is related to a twist-2 colinear PDF


Collins function is related to twist-3 collinear PDF

## Collins asymmetries in $e^+e^- \rightarrow hh+X$



The Collins asymmetries is proportional to  $\cos(\phi_1 + \phi_2)$  or  $\cos(2\phi_0)$ 

## **Collins asymmetries in SIDIS**



The Collins asymmetries is proportional to  $sin(\phi + \phi_s)$ 

Parametrizations:

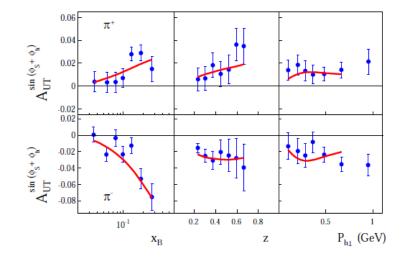
$$h_1^q(x,Q_0) \propto N_q^h x^{a_q} (1-x)^{b_q} \frac{1}{2} \left( f_1(x,Q_0) + g_1(x,Q_0) \right)$$

Transversity

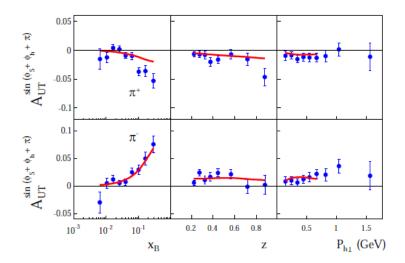
Favoured and unfavoured Collins FF

$$\hat{H}_{fav}^{(3)}(z,Q_0) = N_u^c z^{\alpha_u} (1-z)^{\beta_u} D_{\pi^+/u}(z,Q_0)$$
$$\hat{H}_{unf}^{(3)}(z,Q_0) = N_d^c z^{\alpha_d} (1-z)^{\beta_d} D_{\pi^+/d}(z,Q_0)$$

Total 13 parameters:  $N_u^h, N_d^h, a_u, a_d, b_u, b_d, N_u^c, N_d^c, \alpha_u, \alpha_d, \beta_d, \beta_u, g_c$ 


SIDIS data used: HERMES, COMPASS, JLAB – 140 points e+e- data used: BELLE, BABAR including  $P_T$  dependence – 122 points

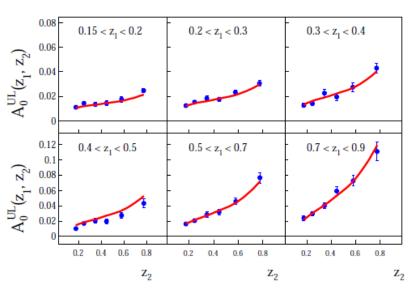
$$\chi^2_{min}/n_{d.o.f} = 0.89$$




$$\ell P \to \pi^{\pm} X$$

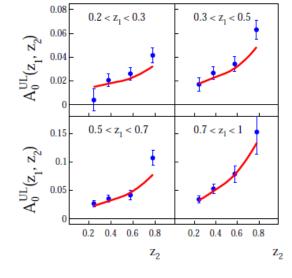
COMPASS




 $1 \lesssim \langle Q^2 \rangle \lesssim 6 \ {
m GeV}^2$ 



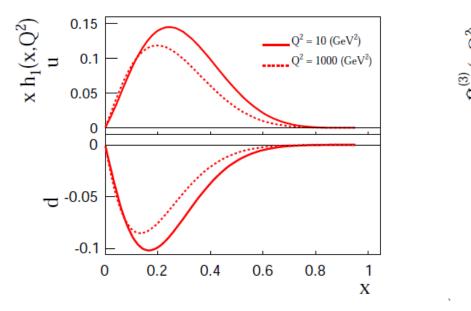
 $1 \lesssim \langle Q^2 \rangle \lesssim \ 21 \ {
m GeV}^2$ 


$$e^+e^- \to \pi\pi X$$

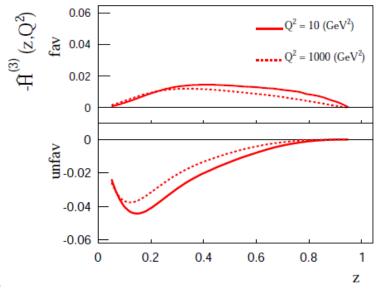
BELLE



BABAR


 $Q^2 = 110 \,\,\mathrm{GeV}^2$ 




 $Q^2 = 110 \text{ GeV}^2$ 

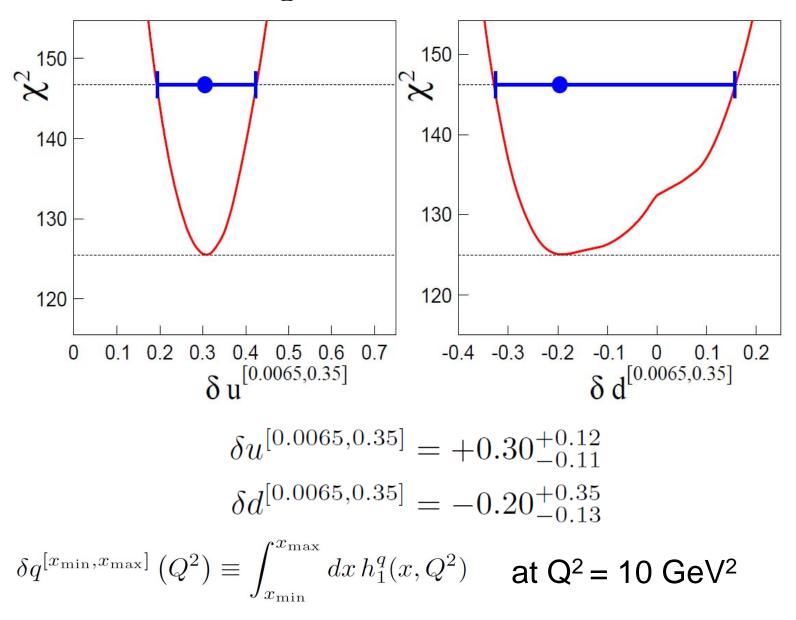
12

#### Transversity



Collins



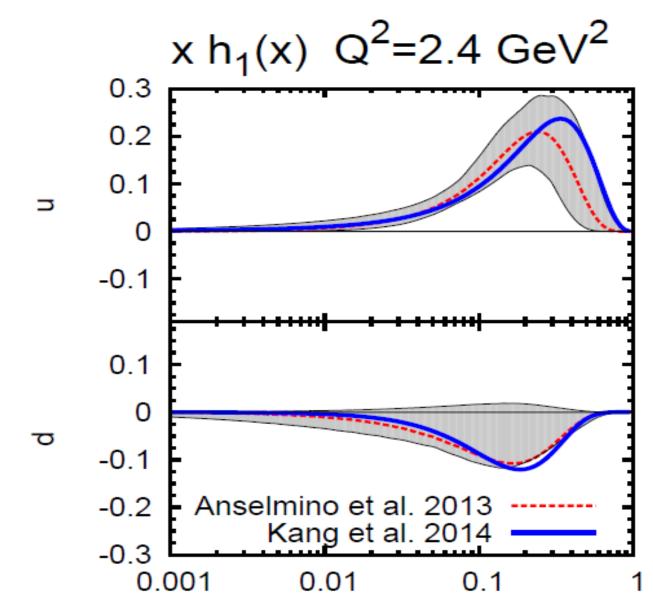

Positive u and negative d transversity

Positive favoured and negative unfavoured Collins FF

Compatible with LO extraction Anselmino et al 2009

#### Transversity and Collins FF Kang-Prokudin-Sun-Yuan 2014 No evolution: What are evolution effects? $Q^2 = 2.4 \text{ GeV}^2$ $e^+e^- \to \pi\pi X$ No $A_2$ 0.06 0.05 0.04 0.03 0.02 0.01 -0.010.6 0.8 0.2 0.4 1.2 P<sub>h</sub> GeV)

#### Scan $\delta q$ for transversity




## Summary

TMD evolution is studied for the Collins effects in e<sup>+</sup>e<sup>-</sup> annihilation and SIDIS

Collins functions and transversity are fitted from the existing data at BELLE, BABAR, JLAB, COMPASS and HERMES with CSS resummation scheme

# Thank you very much!



#### Approaches to TMD evolution

Collins-Soper-Sterman (CSS) resummation framework

"New" Collins approach

Collins-Soper-Sterman 1985 ResBos: C.P. Yuan, P. Nadolsky Qiu-Zhang 1999, Vogelsang tetc... Kang-Xiao-Yuan 2011, Sun-Yuan 2013 Prokudin-Kang-Sun-Yuan 2014

Collins 2011 Aybat-Rogers 2011, Aybat-Collins-Rogers-Qiu, 2012 Aybat-Prokudin-Rogers 2012 Anselmino-Boglione-Melis 2012 Prokudin-Bacchetta 2013 Echevarria-Idilbi-Kang-Vitev 2014

Soft Collinear Effective Theory (SCET)

Echevarria-Idilbi-Schafer-Scimemi 2012 D'Alesio-Echevarria-Melis-Scimemi 2014