2014 International Symposium on Spin Physics

Observation of the surface states in topological (Kondo) insulator Sm(Yb)B₆ and BiTeCI

Tong Zhang

Fudan University

Acknowledgement

ARPES:

J. Jiang, M. Xia, Z. R. Ye, M. Xu, Q. Q. Ge, S. Y. Tan, X. H. Niu,
B. P. Xie, D. L. Feng (Fudan University)
Z. Sun (USTC)
Y. H. Wang, Y. Zhang, S. D. Chen (Stanford University)

STM:

Y.J. Yan, M. Q. Ren, Q. Fan

Materials:

S. Li, Y. F. Li, H. H. Wen (Nanjing University)

F. Chen, X. H. Chen(USTC)

Discussions and theory support:

- R. B. Tao (Fudan University)
- G. M. Zhang (Tsing Hua University)

Outline

ARPES study on the surface states of SmB6 and YbB6

STM study on the surface states of BiTeCI

SmB₆ – a "mystery" Kondo insulator?

4f–5d hybridization

Saturated resistivity

Topological Kondo insulator

X. Dai et al, PRL110, 096401 (2013).

SmB₆ – recent experiment evidence of TKI

S. Wolgast, et al, Phys. Rev. B 88, 180405 (2013)

X. Zhang, et al, Phys. Rev. X 3, 011011 (2013)

Sample characterization

X-Ray Diffraction

(100) face 1x1

Magnetoresistance vs. T

Negative magnetoresistance in low temperature!

Tong Zhang, Fudan University, Spin 2014, Beijing

ARPES: Valence band structure

Localized 4f band located at -18 meV, -150 meV and -950 meV.

A parabolic 5d band around X point.

In-gap states: α

 β and δ bands should be originated from 5d band after hybridization.

In-gap states: γ

Surface states??

 γ bands more observable in 2nd BZ.

Linear dispersion of γ bands.

k_z dependence of α band

ARPES: Circular Dichroism

Possible topological origin!

Chirality of orbital angular momentum in α band.

Intensity inversion between RCP and LCP data in γ band.

Park et al, Phys. Rev. Lett. 108, 0468 (2012)

35 eV

ARPES: T dependence of α band

Integrated EDC near E_F

0.4

 α and β bands vanish or merge into one 5d band at high temperatures.

Possible TI candidate : YbB6

ARPES: Valence band structure

Non-dispersive Yb 4f bands are located at around 1 eV and 2.3 eV below Fermi energy.

An elliptical Fermi pocket located around X and a circular Fermi pocket around Γ are clearly observed.

Near EF dispersive states

Both the α band around Γ and β band around X show almost linear dispersion.

The band top of the γ band overlaps with the band bottom of α band in some energy range.

Near EF dispersive states

Bulk conduction δ band has been observed around the X point.

k_z dependence of α

kz dependence of β

Summary

- SmB₆, identified almost linear dispersive states around Γ and X;
- Circular dichroism of the surface states indicate their possible topological origin;
- Temperature dependence data shows the hybridization of 4f-5d bands across the Kondo temperature.
- SmB₆ is likely a Topological Kondo Insulator.

Outline

ARPES study on the surface states of SmB6 and YbB6

STM study on the surface states of BiTeCI

Structure of BiTeCl (Br, I)

BiTeCI (Br, I)

inversion-symmetry breaking

Polarized surface, Rashba p-n junction

M. Sakano et al., PRL110,107204 (2013) C. T. Colletta et al., Phys. Rev. B 89, 085402 (2014)

Giant Rashba-type splitting in BiTeCI (Br, I)

M. Sakano et al., PRL110,107204 (2013) S. V. Eremeev et al., PRL108,246802 (2012)

Possible topological surface states in BiTeCI

Y. L. Chen et al., Nat. Phys. 9, 704 (2013)

Quasi - particle interference on BiTeCl

Scattering direction changes with energy!

-200mV---75mV: along Γ-M direction

Above 75mV: along Γ-K direction

Dispersions of *q* **vectors**

Γ-M direction

Tong Zhang, Fudan University, Spin 2014, Beijing

Origin of the two q vectors

q1 along direction is likely from topological surface states, like Bi_2Te_3 , the back scattering is prohibit.

q2 could be a rashba like surface states, in which the back scattering is still possible

Bi₂Te₃

Summary

- Two branch of dispersive surface states are observed at BiTeCl surface.
- One of them is likely to be topological surface states without back scattering

Thank you!

Angle-resolved photoemission spectroscopy

Y. L. Chen, et al, Science 329, 659 (2010)

D. Hsieh, et al, Nature 460, 1011 (2009) D. Hsieh, et al, Nature 460, 1011 (2009)

Band structure

 Bi_2Te_3

BiTeCl

BiTel

拓扑表面态是受到时间反演 对称性保护的,在表面准粒 子散射图像中,表现为非磁 性杂质造成的背散射 完全被压制。

Conclusion I

A single topological Dirac fermion in BiTeCI

Summary of YbB6

- Identified almost linear dispersive surface states around Γ and X;
- The total number of surface state is odd;
- Circular dichroism of the surface states indicate their possible topological origin;
- The bulk insulating gap might be around 100meV
- Unsolved issues
 - Two fold symmetry of circular dichroism in α band?

Juan Jiang, Fudan University, 2014 ALS user meeting, Berkley, ARPES study on the surface states in hexaborides SmB6 and YbB6.

Spin polarized topological nontrivial surface states!

Y. L. Chen, et al, Science 329, 659 (2010)

Y. L. Chen, Front. Phys., 2012, 7(2): 175–192

Spin polarized topological nontrivial surface states!

Y. L. Chen, et al, Science 329, 659 (2010)

Park et al, Phys. Rev. Lett. 108, 0468 (2012)

Spin polarized topological nontrivial surface states!

Y. L. Chen, et al, Science 329, 659 (2010)

D. Hsieh, et al, Nature 452, 970 (2008)

Both α and γ bands are likely to be topologically non-trivial!

The total number of surface state is odd!

 α band goes straight through ϕ and coexists with β band.

Sample 2 @ SLS

k_y(Å⁻¹)

 $k_x(A^{-1})$

LCP

0

(RCP-LCP)/(RCP+LCP)

RCP

RCP

25 e\

М

Ā

k_z dependence of 5d band

Bulk origin of γ band.

Obvious 2D nature of the α and β bands, 3D nature of γ band.

The CD of the β pocket shows an anti-symmetric pattern about the $\Gamma\text{-X}$ axis in the surface BZ.

N. Xu, et al, arXiv: 1405.0165 (2014)

The CD of the α pocket shows a two-fold symmetry!

The CD both α and β can be well fitted by a sine function.

However, the period for β is 2π , while that for α is π .

W. Jung, et al, Phys. Rev. B 84, 245435 (2011).

Surface reconstruction?

1x2 reconstruction

Shin-ichi Kimura et al, Phy. Rev. B 86, 075105 (2012)

Circular Dichroism ARPES

The spin polarization of the initial state and the helicity of light determines the matrix element and the intensity.

Circular Dichroism ARPES

S. R. Scholz, et al, Phy. Rev. Lett. 110, 286101 (2013)