Quantum anomalous Hall effect in magnetic topological insulator

Ke He

Department of Physics, Tsinghua University

Acknowledgement

MBE, STM, and ARPES

<u>Cui-Zu Chang</u>, <u>Xiao Feng</u>, Kang Li, Yun-bo Ou, Pang Wei, Li-Li Wang, Shuai-Hua Ji, Xi Chen, Xu-Cun Ma, and **Qi-Kun Xue**

Tsinghua-IOP

Transport

Jinsong Zhang, Zuocheng Zhang,Minghua Guo, Yang Feng, andYayu WangTsinghua

Jie Shen, Zhong-Qing Ji, and Li Lu IOP

Theory & Calc. Xi Dai, Zhong Fang IOP X.-L. Qi, S.-C. Zhang Stanford

Two dimensional electron gas

B

Klaus Von Klitzing

 $ho_{yx} = h / ie^2$ ho_{xx} = 0

Topological origin of QHE

 $\chi = 0$

 $\frac{1}{2\pi} \oint_{S} K dA = \chi$

K: Gauss curvature χ : Euler characteristic Gauss-Bonnet Theorem

 $\frac{1}{2\pi} \oint \Omega d\vec{k} = C$

Ω: Berry curvature*C*: Chern number

Can we obtain QHE without Landau levels?

Graphene with periodic magnetic field but without net flux

Haldane PRL 61, 2015 (1988)

Quantized AHE

Extrinsic: induced by impurities Skew scattering Smit, Physica 1958

Side jump Berger, PRB 1970

Intrinsic: induced by energy band Karplus & Luttinger, Phys. Rev. 1954

$$\sigma_{xy} = \frac{e^2}{h} \sum_{o \, ccup \, ied} \frac{1}{2\pi} \oint_{BZ} \Omega d\vec{k}$$

Chang & Niu PRB 1996, Sundaram & Niu PRB 1999, Fang et al., Science 2003

can be quantized in a ferromagnetic insulator with $C \neq 0$ (Chern insulator)

Onoda & Nagaosa, PRL 2003 Onoda, Sugimoto & Nagaosa, PRL 2006

TRS Invariant Topological Insulators

, Bernevig & Zhang, PRL 2006 Fu, Kane, & Mele, PRL 2007

Real TI Materials

- H. Zhang et al., Nature Phys. 2009
- Y. –L. Chen et al., Science 2009
- Y. Xia et al., Nature Phys. 2009

3D TI: Bi₂Se₃ Family (Bi₂Se_{3,} Bi₂Te_{3,} Sb₂Te_{3,})

QAHE in magnetic TIs

2D TI

- X. -L. Qi, Y. S. Wu & S. -C. Zhang, PRB 2006
- C. -X. Liu et al., PRL 2008
- R. Yu et al., Science 2010

X. -L. Q & S. -C. Zhang, PRL 2008 K. Nomra & N. Nagaosa, PRL 2011

To observe QAHE in a TI

- Thin film with appropriate thickness
 MBE growth
- FM insulator phase with perpendicular magnetic anisotropy

Magnetic doping

• Tunable chemical potential (carriers)

Chemical doping

Field effect

MBE-STM-ARPES Combo System Omicron

MBE: Sample preparation ARPES: Band structure STM: Atomic arrangement

@ Qi-Kun Xue's group Tsinghua-IOP

Facility for Transport Experiments Oxford

250 mK, 15 Tesla @ Yayu Wang's Group (Tsinghua)

30 mK, 18 Tesla @ Li Lu's Group (IOP)

MBE-grown Bi₂Se₃ thin films

Yi Zhang et al., Nature Phys. 6, 584 (2010).

MBE-grown Sb₂Te₃ and Bi₂Te₃ thin films

G. Wang et al., Nano Res. 3, 874 (2010).

Y. –Y, Li et al., Adv. Mater. 22, 4002 (2010).

Magnetically doped Bi₂Se₃ family TIs: FM of van Vleck mechanism

Cr-doped Bi₂Se₃ group TIs

M. Liu et al., PRL **108**, 036805 (2012) J. Zhang et al., Science 339, 1582 (2013) C. -Z. Chang et al., PRL 112, 056801 (2014)

Magnetism of Cr_{0.22}(Bi_xSb_{1-x})₂Te₃

Gate-doping Cr_{0.22}(Bi_xSb_{1-x})_{1.78}Te₃ film with SrTiO₃ substrate

- FM order is little influenced
- ρ_{yx} up to ¼ h/e²

C. –Z. Chang et al., Adv. Mater. 25, 1065 (2013).

After one and half a year...

ρ_{yx}-B at different gate voltages 5QL Cr_{0.15}(Bi_xSb_{1-x})_{1.85}Te₃ on SrTiO₃ (111)

220 V

ρ_{xx} -B at different gate voltages

220 V

V_{g} dependent zero field ρ_{xx} and ρ_{yx}

Quantum plateau observed

0.99 (e²/h)

1 (h/e²)

Dissipationless transport in magnetic field (@ 30 mK)

Temperature dependence

C. –Z. Chang et al., Science 340, 167 (2013)

Thickness dependence of the QAHE in Cr-doped (Bi,Sb)₂Te₃ film (low field)

@5 K

@30 mK

Lower thickness limit of a QAH film

 $\Delta > \overline{E}_{\rm ex}$: trivial

 $\Delta < E_{\rm ex}$: QAH

Landau levels of the SSs of Sb₂Te₃ Y. Jiang et al., PRL 2012

3 QL : $\Delta \sim 50$ meV

 $4 \text{ QL}: \Delta < 1 \text{ meV}$

Outlook

• QAHE at higher temperature

.

- High order QAHE (Jing Wang, PRL 2008)
- QAH-based topological superconductors (X. –L. Qi, PRB 2010)

Summary

• Magnetically doped TI thin films

MBE-grown TI thin films

• Chemical potential tuning

• QAHE

Thank you for your attention !

STM of Cr doped Sb₂Te₃

Cr atomsNo ClusteringOccupying Sb sites!

LT-ARPES in Xingjiang Zhou's Lab (IOP)

Cr-doped (Bi_{0.5}Sb_{0.5})₂Te₃ Tc ~ 40K