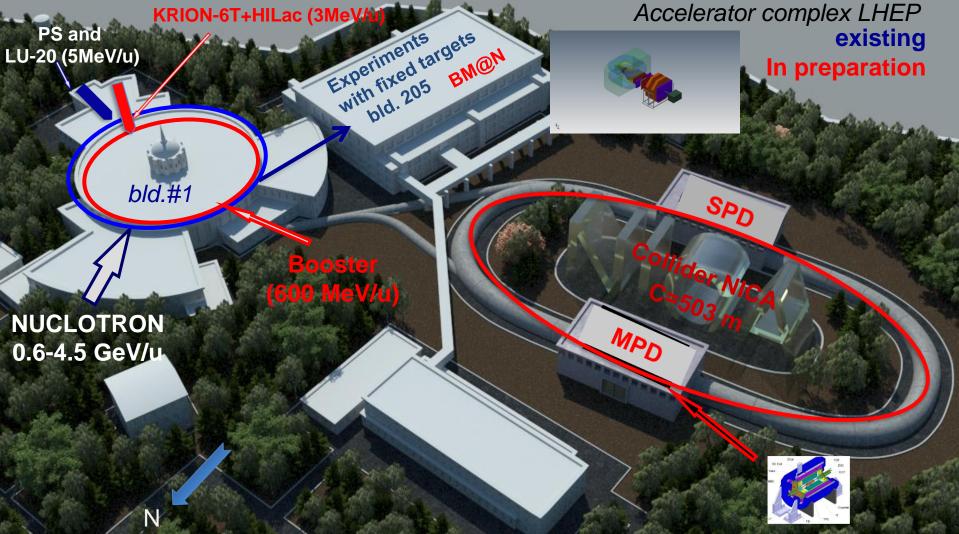

MPD and BM@N detectors at NICA Prospects for the Polarization Effects Measurements

D.Peshekhonov JINR

SPIN2014 China

From Synchrophasotron to heavy ion collider

to develop the accelerator complex at JINR, which will allow obtaining of intense beams from **p** to **Au** and polarized **protons** and **deuterons** with the maximum energy up to $\sqrt{S_{NN}} = 11 \text{ GeV} (Au^{79+})$ and =26 GeV (p)


SPIN2014 China

Complex NICA

Collider basic parameters:

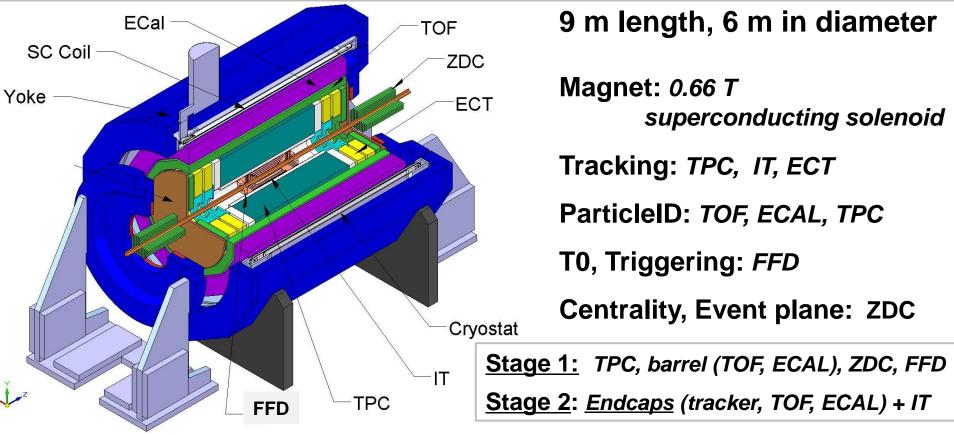
 $\sqrt{s_{NN}} = 4-11 \text{ GeV}; \text{ beams: from p to Au; } L~10^{27} \text{ cm}^{-2} \text{ c}^{-1} (\text{Au}), ~10^{32} \text{ cm}^{-2} \text{ c}^{-1} (\text{p})$

Civil Construction of NICA Complex

The whole Complex is split into several Objects:

- MPD Hall Dec. 2016
 SPD Hall Jan. 2020 (?)
 West semi-ring end of 2017
 East semi-ring end of 2018
- Beam extraction
- Reconstruction of building #1

affect Nuclotron operation


- The schedule of object constructions should be coordinated with:
- Nuclotron operation plans
- MPD magnet fabrication schedule
- Equipment installation plans

MultiPurpose Detector (MPD)

MultiPurpose Detector (MPD)

MPD potential advantages:

u Hermetic & homogenous acceptance (2π in azimuth), low material budget

Good tracking performance and powerful PID (nuclei, hadrons, e, γ)

High event rate capability and reliable event separation
 D.Peshekhonov
 SPIN2014 China

MPD status

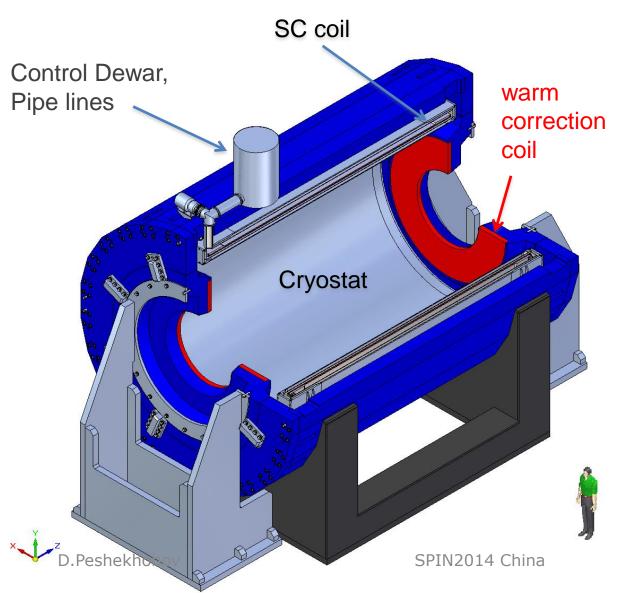
- 1. Magnet
- 2. Integration
- 3. TOF, ECAL, ZDC
- 4. FFD
- 5. TPC

- survey for producers
- project preparation
- TDR preparation
- fabrication stage
- assembly area preparations
- fabrication of basic elements
- readout chambers production + R&D (alternative)
- FEE (ALTRO-based Front-End card prototype
 - preproduction stage

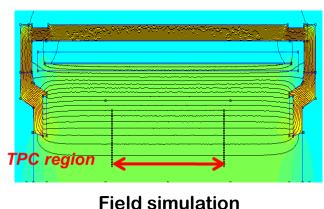
(parking & in-beam positions)

The weight of the magnet (~ 980 t) and the whole detector (~1200 t) led to rather tough technical requirements for the basement surface and stability

collider beam pipe


D.Pesheldhonov

SPIN2014 China


MPD Solenoid

B=0,66 T; level ~ 10⁻⁴ of magnetic field homogeneity

The 5 Packages:

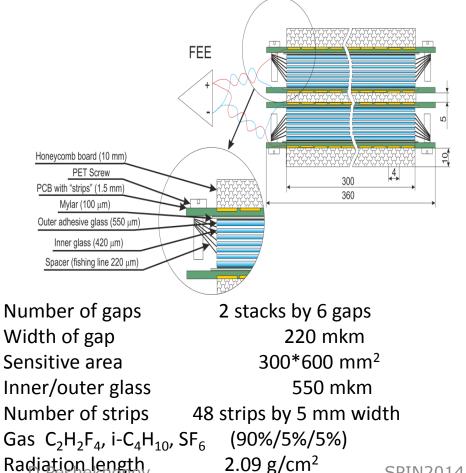
- 1. Yoke + Poles, support structure
- 2. Cryostat vacuum system
- 3. Correction coils
- 4. Cryogenic System
- 5. Control System

9

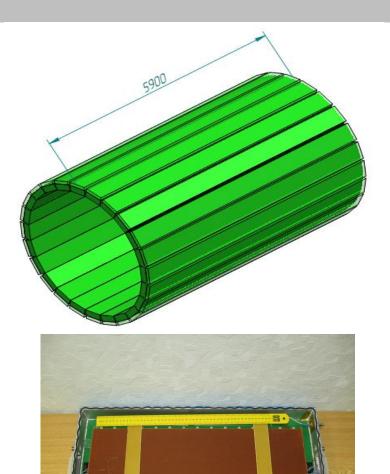
	MPD Solenoid		
ASG Superconducti	ng (Genova, Italy)	->	CMS Solenoid
Three meetings at Cl	ERN with the CMS magnet	t team	• 1
Two visits to ASG (Ge	enova);		
Production drawingProduction	preparation & adaptation		- few monthes ~ 2 years
TOSHIBA (Japan)		->	ATLAS Solenoid
Letter exchange with Consultancy with AT			
Contracts for Magnet	Packages:		
✓ selection of proc	lucers		by November 2014
 contract prepara 	ntion		January 2015

Schedule for MPD Magnet fabrication and put in operation

		20	14			20	15			2016		2017			1	2018				
	I	П	Ш	IV	Ι	П	Ш	IV	Т	П	Ш	IV	Ι	П	Ш	IV	I	П	Ш	IV
Technical Project development & follow-up																				
Choice of producer for the Cold Mass & Cryostat (CMC)																				
Contract preparation for the CMC																				
Technical Project for Magnet-Detector Interface																				
The CMC + Control Duar production																				
Choice of producer for the Yoke & Supp. Structure (SS)																				
The Yoke and SS production																				
The Trim Coils (TC) production																				
The SS & 1/2 Yoke delivery & installation in the MPD Hall																				
The CMC delivery and mounting on the 1/2 Yoke																				
The TC delivery & mounting (integration with the Yoke)																				
Delivery & assembly of the complete Yoke & mechanics																				
Cryogenic Equipment (CE) production																				
The CE delivery and installation																				
PS and Engineering Infrastructure (EI) fabrication																				
The PS and EI delivery, and installation																				
Integration, tests & commissioning of the CE, PS & El																				
Magnet tests																				
The field measurement																				
The overall commissioning	the MPD Hall Is available																			
D.Peshekhonov	0	SPIN	120	14 (Chir	าล											-	1	1	

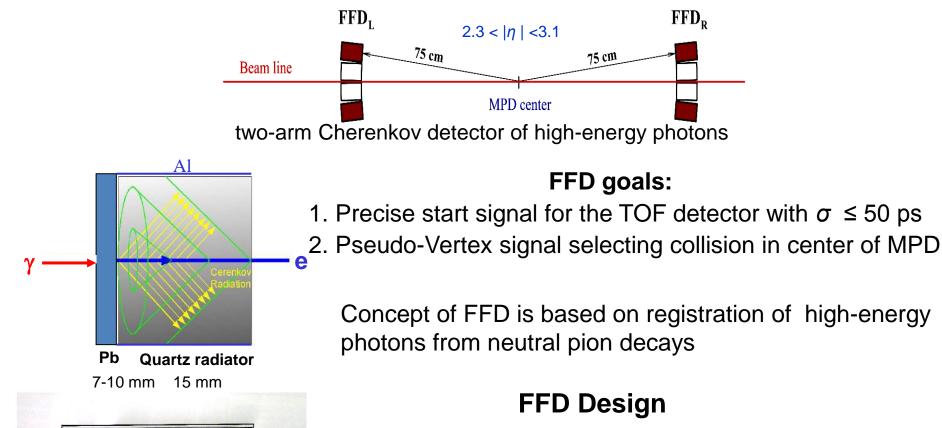

Radiation length

TOF Barrel Design

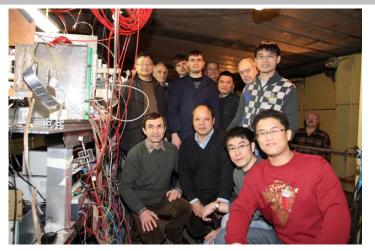

Active area of TOF barrel Number of channels

 $^{2}56 m^{2}$ 13824

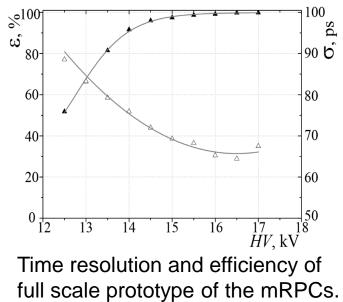
The barrel of the TOF consist of 12 supermodules (two modules connected together)

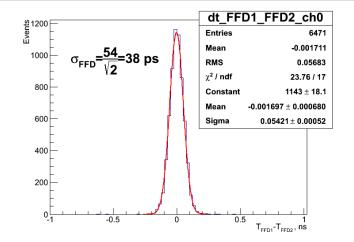

SPIN2014 China

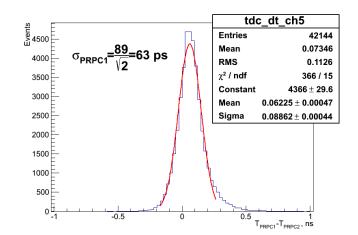
12 A full scale prototype of mRPC



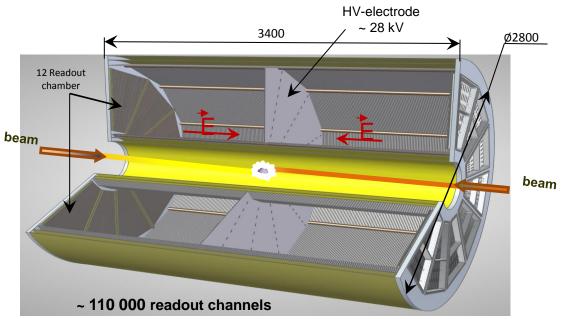
The high-energy photons are registered by their conversion to electrons inside a lead plate $(1.5-2 X_0)$. The Cherenkov light, produced by the electrons in quartz radiator, is detected by MCP-PMT XP85012/A1-Q (Photonis).


SPIN2014 China




Results of beam tests on the Nuclotron

Cooperation with Hefei & Tsinghua Universities

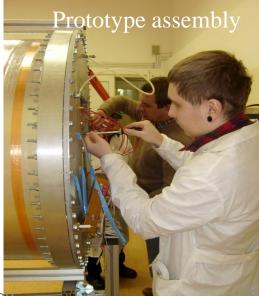

Time Projection Chamber

Physics requirements:

The overall acceptance on $|\eta| \sim 1.2$ The momentum resolution ~ 3% in p_t interval from 0.1 to 1 GeV/c Two-track resolution ~ 1 cm. Charged particle multiplicity ~ 1000 in a central collisions Hadron and lepton identification by dE/dx measurements with resolution better than 8%

TPC Prototype D.Peshekhonov

Sketch of TPC MPD



SPIN2014 China

TPC - fabrication stage

Cylinder C3 manufactured Ø140 cm, L=3.4 m 4 mm thickness 0,1 mm precision

FEC-64 prototype (ALTERA FPGA, ALTRO, PASA chips)

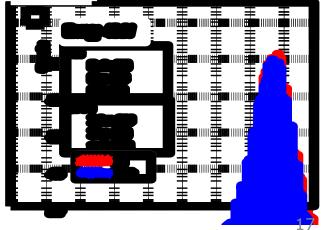
D.Peshekhono

PIN2014 China

ECAL – TDR in preparation

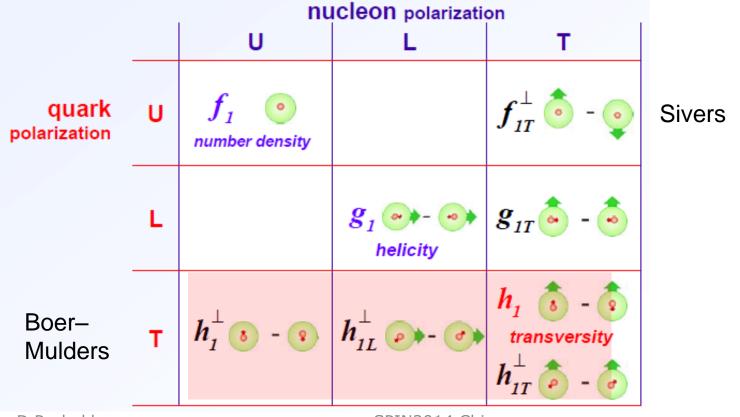
ECAL tests with e:

- performance study of two ECAL modules with *different WLS-fibers*
- Tests of the ECAL read-out electronics (amplifiers and ADCs)
- Energy scan (E_e = 1 6 GeV) Analysis of the recorded data indicates good performance


Preparation for tests with electron beams at DESY (December'13)

cosmic ray test

ECAL response to 4 GeV electrons



MPD with polarized beams

TMD parton distributions

- 8 intrinsic-transverse-momentum dependent PDFs at leading twist
- Azimuthal asymmetries with different angular modulations in the hadron and spin azimuthal angles, Φ_h and Φ_s
- Vanish upon integration over k_{τ} except f_1 , g_1 , and h_1

D.Peshekhonov

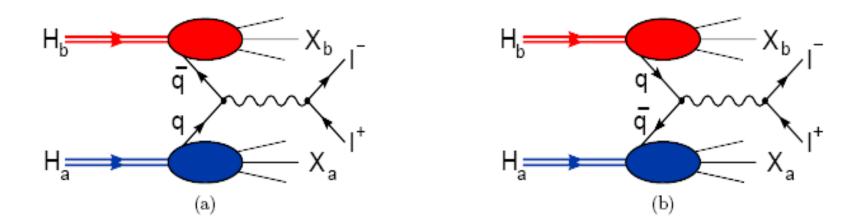
Physics motivations

2.1. Nucleon spin structure studies using the Drell-Yan mechanism.

2.2. New nucleon PDFs and J/Ψ production mechanisms. 2.3. Direct photons.

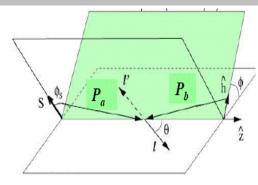
2.4. Spin-dependent high- p_T reactions.

2.5. Spin-dependent effects in elastic pp and dd scattering.


2.6. Spin-dependent reactions in heavy ion collisions.

2.7. Future experiments on nucleon structure in the world.

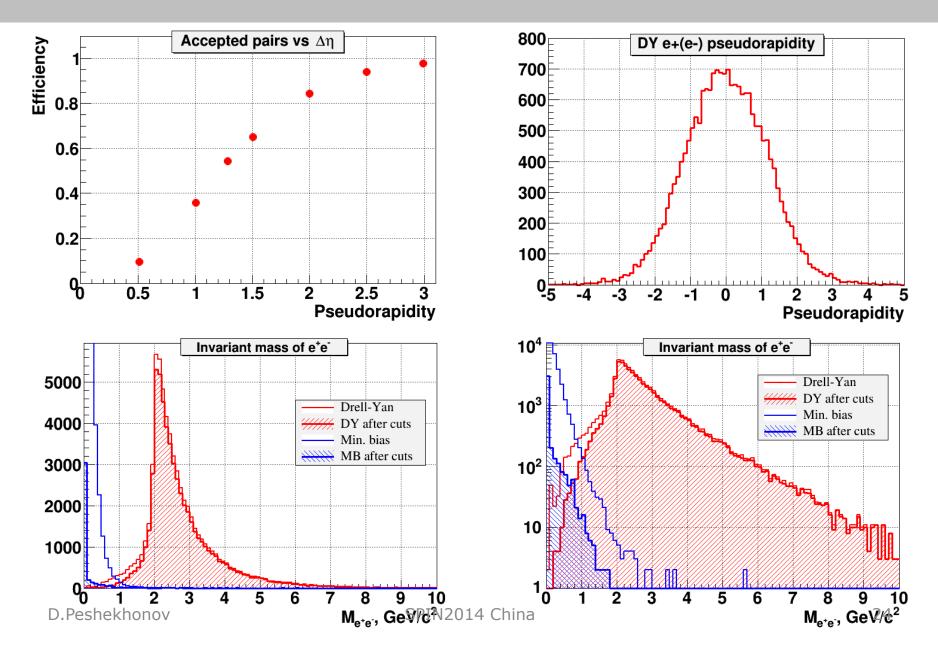
Drell-Yan with registration of electron pairs


Extraction of poor known or unknown PDFs with colliding proton and deuteron unpolarized, longitudinally & transversely polarized beams and asimmetries measuring

$$H_a(P_a, S_a) + H_b(P_b, S_b) \to l^-(l, \lambda) + l^+(l', \lambda') + X$$

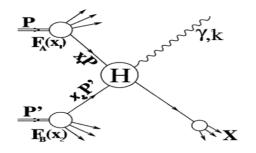
Asymmetries: A_{LU} , A_{UL} , A_{TU} , A_{UT} , A_{LL} , A_{TL} , A_{LT} , A_{TT}

$$\begin{split} &A_{UU} \equiv \frac{\sigma^{00}}{\sigma_{im}^{00}} = \frac{1}{2\pi} (1 + D\cos 2\phi A_{UU}^{on24}) \\ &A_{LU} \equiv \frac{\sigma^{-v0} - \sigma^{-v0}}{\sigma_{im}^{-v0} + \sigma_{im}^{e-0}} \equiv \frac{|S_{aL}|}{2\pi} D\sin 2\phi A_{UL}^{on24} \\ &A_{UL} \equiv \frac{\sigma^{0-} - \sigma^{0+}}{\sigma_{im}^{0-} + \sigma_{im}^{0+}} \equiv \frac{|S_{aL}|}{2\pi} D\sin 2\phi A_{UL}^{on24} \\ &A_{UL} \equiv \frac{\sigma^{0-} - \sigma^{0+}}{\sigma_{im}^{0-} + \sigma_{im}^{0+}} \equiv \frac{|S_{aT}|}{2\pi} D\sin 2\phi A_{UL}^{on24} \\ &A_{TU} \equiv \frac{\sigma^{10} - \sigma^{40}}{\sigma_{im}^{10} + \sigma_{im}^{00}} \equiv \frac{|S_{aT}|}{2\pi} \left[A_{TU}^{\sin(\phi-\phi_{aL})} \sin(\phi-\phi_{S_{a}}) + D\left(A_{TU}^{\sin(3\phi-\phi_{aL})} \sin(3\phi-\phi_{S_{a}}) + A_{TU}^{\sin(\phi+\phi_{aL})} \sin(\phi+\phi_{S_{a}}) \right) \right] \\ &A_{UT} \equiv \frac{\sigma^{0-} - \sigma^{40}}{\sigma_{im}^{0+} + \sigma_{im}^{0+}} \equiv \frac{|S_{aT}|}{2\pi} \left[A_{TT}^{\sin(\phi-\phi_{aL})} \sin(\phi-\phi_{S_{a}}) + D\left(A_{UT}^{\sin(3\phi-\phi_{aL})} \sin(3\phi-\phi_{S_{a}}) + A_{UT}^{\sin(\phi+\phi_{aL})} \sin(\phi+\phi_{S_{a}}) \right) \right] \\ &A_{LT} \equiv \frac{\sigma^{0-} + \sigma^{-i+}}{\sigma_{im}^{0+} + \sigma_{im}^{0+} + \sigma_{im}^{-i+}} \equiv \frac{|S_{aL}S_{bL}|}{2\pi} \left[A_{LL}^{\cos(\phi+\phi_{aL})} \cos(\phi-\phi_{S_{a}}) + D\left(A_{LT}^{\cos(\phi+\phi_{aL})} \cos(\phi-\phi_{S_{a}}) \right) \right] \\ &A_{LT} \equiv \frac{\sigma^{1+} + \sigma^{-i+} - \sigma^{-i-} - \sigma^{-i-}}{\sigma_{im}^{0+} + \sigma_{im}^{0+} + \sigma_{im}^{0+}}} \equiv \frac{|S_{aL}|S_{bL}|}{2\pi} \left[A_{LT}^{\cos(\phi+\phi_{aL})} \cos(\phi-\phi_{S_{a}}) + D\left(A_{LT}^{\cos(\phi+\phi_{aL})} \cos(\phi-\phi_{S_{a}}) \right) \right] \\ &A_{LT} \equiv \frac{\sigma^{-1} + \sigma^{-i+} - \sigma^{-i-} - \sigma^{-i-}}{\sigma_{im}^{0+} + \sigma_{im}^{0+} + \sigma_{im}^{0+}}} \equiv \frac{|S_{aL}|S_{bT}|}{2\pi} \left[A_{LT}^{\cos(\phi+\phi_{aL})} \cos(\phi-\phi_{S_{a}}) + D\left(A_{LT}^{\cos(\phi+\phi_{aL})} \cos(\phi-\phi_{S_{a}}) \right) \right] \\ &A_{TT} \equiv \frac{\sigma^{1+} + \sigma^{-i+} - \sigma^{-i-} - \sigma^{-i-}}{\sigma_{im}^{0+} + \sigma_{im}^{0+} + \sigma_{im}^{0+}}} \equiv \frac{|S_{aL}|S_{bT}|}{2\pi} \left[A_{LT}^{\cos(\phi+\phi_{aL})} \cos(\phi-\phi_{S_{a}}) + D\left(A_{LT}^{\cos(\phi+\phi_{aL})} \cos(\phi+\phi_{S_{a}}) \right) \right] \\ &A_{TT} \equiv \frac{\sigma^{1+} + \sigma^{+i+} - \sigma^{-i-} - \sigma^{-i+}}{\sigma_{im}^{0+} + \sigma_{im}^{0+} + \sigma_{im}^{0+}}} \equiv \frac{|S_{aL}|S_{bT}|}{2\pi} \left[A_{TT}^{\cos(\phi+\phi_{aL})} \cos(\phi-\phi_{S_{a}}) + A_{TT}^{\cos(\phi+\phi_{A_{a})}} \cos(\phi+\phi_{S_{a}}) \right] \\ &+ D\left(A_{TT}^{\cos(\phi+\phi_{A_{a})}} \cos(\phi_{S_{a}} + \phi_{S_{a}}) + A_{TT}^{\cos(\phi+\phi_{A_{a}-\phi_{A_{a}})}} \cos(\phi+\phi_{S_{a}}) \cos(\phi+\phi_{S_{a}}) \right] \\ &+ D\left(A_{TT}^{\cos(\phi+\phi_{A_{a}+\phi_{A_{a}})} \cos(\phi_{S_{a}} + \phi_{S_{a}}) + A_{TT}^{\cos(\phi+\phi_{A_{a}-\phi_{A_{a}})}} \cos(\phi+\phi_{S_{a}}) \right) \right] \\ \\ &= D^{2} \text{Peshe$$


Estimations of DY total cross sections and numbers of events

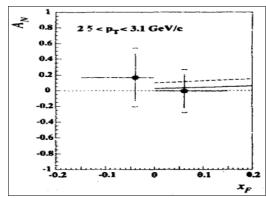
lower cut on Q , GeV	2.0	3.1	3.5	4.0						
$\sqrt{s} = 20 \text{ GeV} (L \simeq 0.5 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1})$										
σ_{DY} total, nb	0.86	0.13	0.07	0.03						
N events for a month, 10^3	120	18	9.7	4.6						
$\sqrt{s} = 22 \text{ GeV} (L \simeq 0)$	$.7 \cdot 10^{3}$	$c^2 \mathrm{cm}^{-2}$	$^{2}s^{-1})$							
σ_{DY} total, nb	1.01	0.16	0.09	0.05						
N events for a month, 10^3	200	33	18	9.0						
$\sqrt{s} = 24 \text{ GeV} (L \simeq 1)$	$.0 \cdot 10^{3}$	c^2 cm ⁻²	$^{2}s^{-1})$							
σ_{DY} total, nb	1.15	0.20	0.12	0.06						
N events for a month, 10^3	300	52	30	15						
$\sqrt{s} = 26 \text{ GeV} (L \simeq 1.2 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1})$										
σ_{DY} total, nb	1.30	0.24	0.14	0.07						
N events for a month, 10^3	415	77	45	24						

Possible DY statistics for NICA – p. 4


MPD simulation

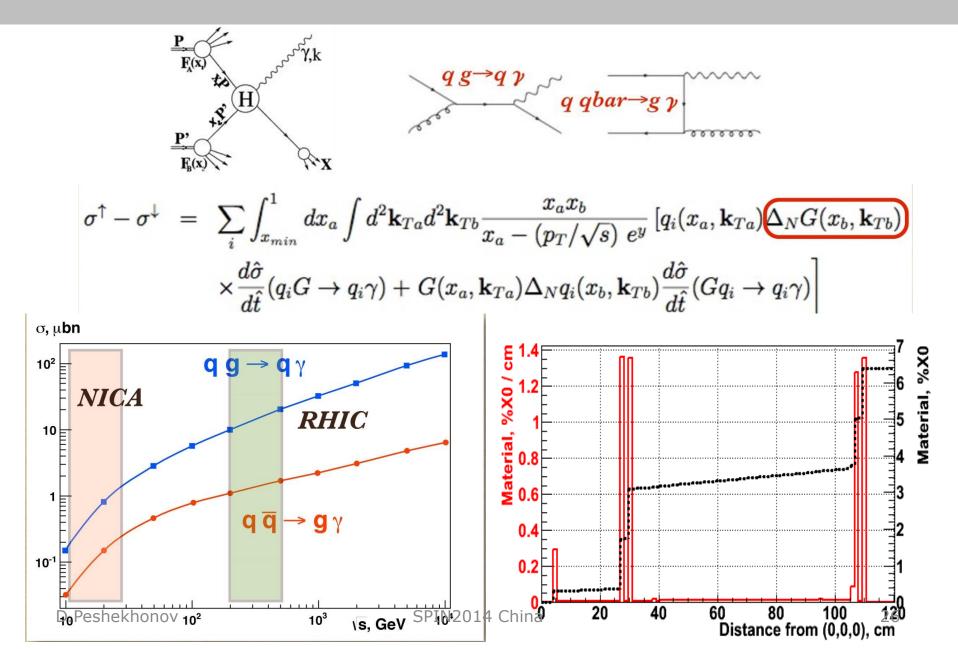
Direct photons

Direct photon productions in the non-polarized and polarized *pp (pd)* reactions provide information on the gluon distributions in nucleons


Vertex H corresponds to $q + qbar \rightarrow \gamma + g$ or $g + q \rightarrow \gamma + q$ hard processes.

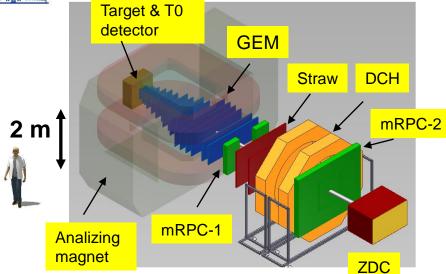
the polarized gluon distribution (Sivers gluon function) can be extracted from measurement of the transverse single spin asymmetry

$$A_N = \frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$
 . It is of order few %.


Via double spin asymmetry A_{LL} one can measure a gluon polarization in the nucleon:

$$A_{LL} \approx \frac{\Delta g(x_1)}{g(x_1)} \cdot \left[\frac{\sum_q e_q^2 \left[\Delta q(x_2) + \Delta \bar{q}(x_2) \right]}{\sum_q e_q^2 \left[q(x_2) + \bar{q}(x_2) \right]} \right] \cdot \hat{a}_{LL}(gq \to \gamma q) + (1 \leftrightarrow 2),$$

Direct photons at MPD



$\sqrt{s}=24 \text{ GeV}$	σ_{tot} ,	$\sigma_{P_T>4~GeV/c},$	Events/year,	Events/year,
$L = 1.0 \times 10^{32}, \ cm^{-1}s^{-1}$	nbarn	nbarn	106	$10^{6} (P_T > 4 \ GeV/c)$
All processes	1290	42	3260	105
$qg ightarrow q\gamma$	1080	33	2730	84
$q\bar{q} \rightarrow g\gamma$	210	9	530	21
$\sqrt{s}=26 \text{ GeV}$	σ_{tot} ,	$\sigma_{P_T>4 GeV/c},$	Events/year,	Events/year,
$L = 1.2 \times 10^{32}, \ cm^{-1}s^{-1}$	nbarn	nbarn	106	$10^{6} (P_T > 4 \ GeV/c)$
All processes	1440	48	4340	144
$qg ightarrow q\gamma$	1220	38	3680	116
			660	28

BM@N setup

BM@N advantage: large aperture magnet (~1 m gap between poles)

 \rightarrow fill aperture with coordinate detectors which sustain high multiplicities of particles

 \rightarrow divide detectors for particle identification to "near to magnet" and "far from magnet" to measure particles with low as well as high momentum (p > 1-2 GeV/c)

 \rightarrow fill distance between magnet and "far" detectors with coordinate detectors

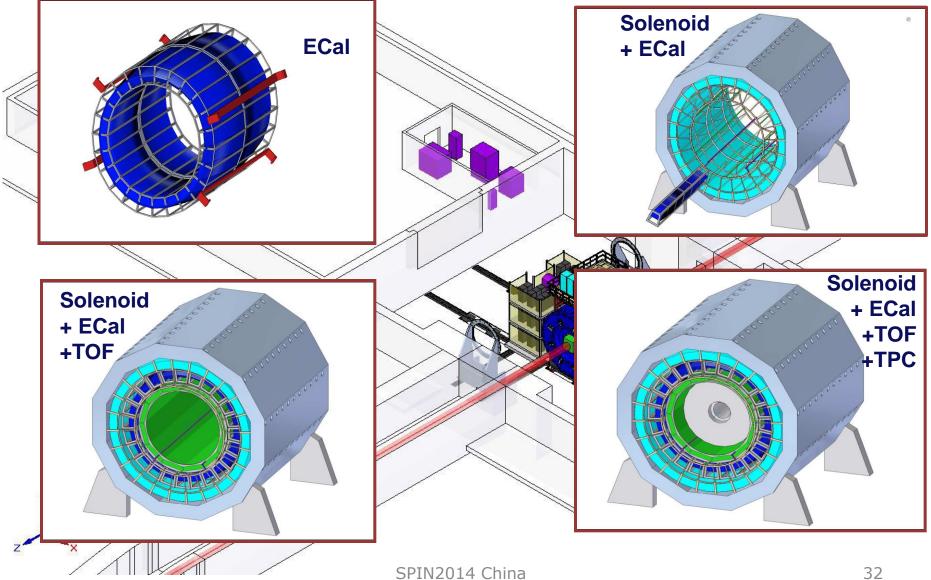
- Central tracker (GEM) inside analyzing magnet to reconstruct AA interactions
- Outer tracker (DCH, Straw) behind magnet to link central tracks to ToF detectors
- ToF system based on mRPC and T0 detectors to identify hadrons and light nucleus
- ZDC calorimeter to measure centrality of AA collisions and form trigger
- Detectors to form T0, L1 centrality trigger and beam monitors
- Electromagnetic calorimeter for γ,e+e-

M.Kapishin

- 1. The comprehensive program of the spin nucleon structure and other spin dependent reactions study can be realized at NICA using the polarized proton, deuteron and heavy ion beams and MPD detector.
- 2. Some spin dependent reactions can be studied with BM@N setup if polarized target will be added.

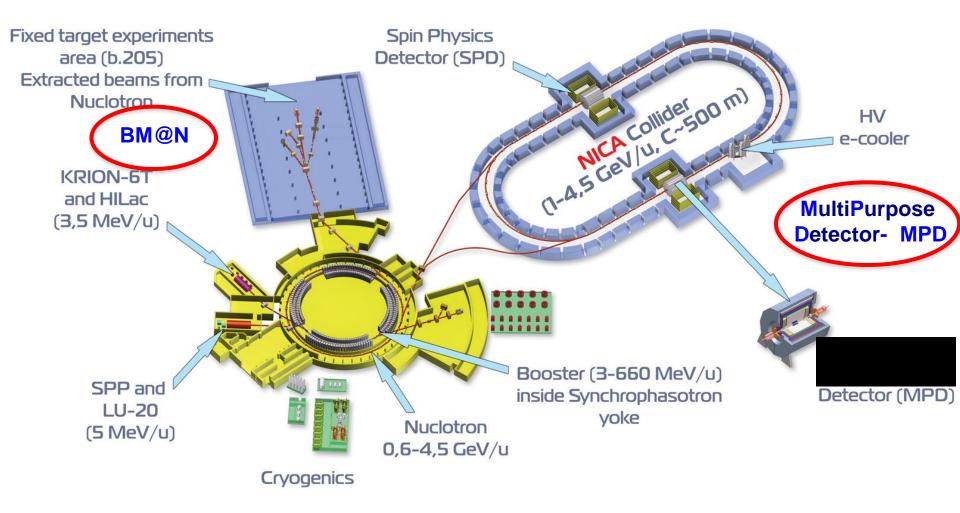
Thank you

Straw wheels & Fast Forward Calorimeter


Straw: end-cup tracker good spatial resolution & low material budget

FFD: Trigger start-up, fast response (<40 psec)

Assembly & Integration


Project preparation

D.Peshekhonov

Superconducting accelerator complex NICA (Nuclotron based Ion Collider fAcility)

Требования к ТРС

- ✓ Высокая эффективность регистрации треков в интервале псевдобыстрот |η|~1.2;
- ✓ Двухтрековое разрешение ~ 1 см для разделения треков частиц;
- ✓ Для идентификации адронов и лептонов разрешение по dE/dx должно быть лучше 8%;
- ✓ Разрешение по импульсу заряженных частиц лучше 3% при поперечном импульсе до 1 ГэВ/с
 - Множественность вторичных частиц ~ 1000,
 - > Частота столкновений 5 кГц.

D.Peshekhonov

А. Рыбаков

SPIN2014 China

Дубна, ОИЯИ

2014

Assembly & Integration

Drell-Yan with registration of electron pairs

Extraction of poor known or unknown PDFs with proton and deuteron unpolarized, longitudinally/transversely polarized beams With help of double and single asymmetries measurements

Extraction of unknown (poor known) parton distribution functions (PDFs):

 $p(D)p(D) \rightarrow \gamma^* X \rightarrow l^+ l^- X$ **Boer-Mulders PDF**

 $p^{\uparrow}(D^{\uparrow})p(D) \rightarrow \gamma^* X \rightarrow l^+ l^- X$

 $p^{\uparrow}(D^{\uparrow})p^{\uparrow}(D^{\uparrow}) \rightarrow \gamma^{*}X \rightarrow l^{+}l^{-}X$

Sivers PDFs (Efremov,... PLB 612 (2005), PRD 73(2006));

Transversity PDF (Anselmino, Efremov, ...)

 $p^{\uparrow}(D^{\uparrow})p(D) \rightarrow \gamma^{*}X \rightarrow l^{+}l^{-}X$ $p(D)p(D) \rightarrow \gamma^* X \rightarrow l^+ l^- X$

Transversity and first moment of **Boer-Mulders PFDs** (Sissakian, Shevchenko, Nagaytsev, Ivanov, PRD 72(2005), EPJ C46 ,2006 C59, 2009)

 $p \rightarrow (D \rightarrow) p \leftarrow (D \leftarrow) \rightarrow \gamma^* X \rightarrow l^+ l^- X$ Longitudinally polarized sea and strange PDFs and tenzor deuteron structure (Tervaev,) D.Peshekhonov SPIN2014 China

Unpolarized beams

Process	Beams	Energy,	L	To measure	Expected results
		GeV			
DY- J/ψ	рр	12x12	10 ³²	Asymmetry	Duality test
DY via e+e-	рр	12x12	10 ³²	Asymmetry	Boer-Mulders
					PDF
J/ψ via e+e-	рр	12x12	10 ³²	Cross	Model tests
				sections	

Longitudinally polarized beams

Direct Photons	pp,	12x12,	10 ³² ,	Asymmetry	ΔG/G
	dd	6x6	10 ³¹		
DY via e+e-	pp,	12x12,	10 ³² ,	Asymmetry	Sea and strange
	dd	6x6	10 ³¹		PDFs, tenzor
					deuteron
					structure
DY+ hadron	рр	12x12	10 ³²	Asymmetry	
J/ψ via e+e-	pp,	12x12,	10 ³² ,	Asymmetry	Model tests
	dd	6x6	10 ³¹		

Transversally polarized beams

Process	Beams	Energy, GeV	L	To measure	Expected results
DΥ- J/ψ	pp,	5-12, scan	10 ³² , 10 ³¹	Asymmetry	Duality test
DY via e+e-	pp, dd,	12x12,	10 ³² ,	Asymmetrie	Transversity,
	nucl		10 ³¹	s, cross	Sivers,
				section	Pretzelority
				ratios	PDFs, sign(DY-
					SIDIS),
					EMC effect test
J/ψ via e+e-	pp,	12x12,	10 ³² ,	Cross	Model tests
			10 ³¹	sections	
Direct Photons	pp,	12x12,	10 ³² ,	Asymmetry	Gluon Sivers PDF
			10 ³¹		