

High Precision Measurement of Transversity using Di-hadron Correlations in p⁺+p Collisions at $\sqrt{s} = 500$ GeV at STAR

Michael Skoby For the STAR Collaboration

Center for Exploration of Energy and Matter

U INDIANA UNIVERSITY

Overview

• Why measure $\pi^+\pi^-$ correlations?

• Some analysis details

• Asymmetry measurements vs η , p_T and M_{Inv}

Conclusions

Motivation

Bacchetta, Courtoy, Radici, JHEP **1303** (2013) 119

- Di-hadron correlations allow point-to-point transversity measurements in SIDIS
- High precision data lacking at relatively high x
- Measuring transversity from polarized p+p data
 - collinear framework
 - high precision, reduced u-quark dominance
 - test of universality (SIDIS vs p+p)
 - new kinematic regime

STAR

- 2011 polarized p+p collisions at 500 GeV with 25 pb⁻¹ integrated luminosity
- P_{beam} = 53%
- Solenoidal Tracker at RHIC (STAR)
- Charged pions measured in Time Projection Chamber
 - -2π azimuthal coverage
 - $-1 < \eta < 1$
- Endcap and Barrel electromagnetic calorimeters and vertex position detector used to select events

Charged Pion Purity Estimates

p _T range (GeV/c)	Pion purity
1.5 – 2.0	0.97
2.0 - 3.0	0.94
3.0 - 4.0	0.88
4.0 - 6.0	0.83
6.0 - 8.0	0.86
> 8.0	0.97

- Use dE/dx to identify pions
- $n\sigma(\pi) \approx \# \text{ of } \sigma \text{ in } z = \ln\left(\frac{dE/dx_{measured}}{dE/dx_{parameterized}}\right)$ distribution
- Excellent pion purity samples

Asymmetry Observable

- Calculated for *P_B* as incident beam, *P_A* as target
- Incident beam is polarized and target unpolarized by summing over bunches
- Pion separation = $\sqrt{(\Delta \eta^2 + \Delta \phi^2)} < 0.7$
- $A_{UT} \propto h_1 \cdot H_1^<$
 - Transversity (h_1)
 - Interference Fragmentation Function (H_1^{\leq})
- A_{UT} is expected to depend on the invariant mass (M_{Inv}) and p_T of the pion pair

Extract A_{UT}

- Particle $p_T > 1.5 \text{ GeV/c}$
- Pair p_T > 3.75 GeV/c
- For a given M_{Inv}, p_T bin the asymmetry is calculated for 8 φ_{RS} bins
- The asymmetry is the amplitude extracted from a single-parameter fit
- Example shown here is one M_{Inv}, p_T bin

 $A_{UT}(\varphi_{RS}) = \frac{1}{P} \frac{\sqrt{N \uparrow (\varphi_{RS}) N \downarrow (\varphi_{RS} + \pi)} - \sqrt{N \downarrow (\varphi_{RS}) N \uparrow (\varphi_{RS} + \pi)}}{\sqrt{N \uparrow (\varphi_{RS}) N \downarrow (\varphi_{RS} + \pi)} + \sqrt{N \downarrow (\varphi_{RS}) N \uparrow (\varphi_{RS} + \pi)}}$

Asymmetry (η , p_T)

- A_{UT} as a function of η plotted for 5 p_T bins
- Significant
 asymmetry
 seen at high η
 and high <p_T>

Asymmetry (η , p_T)

- A_{UT} as a function of η plotted for 5 p_T bins
- Significant
 asymmetry
 seen at high η
 and high <p_T>

Asymmetry (M_{Inv},p_T)

- A_{UT} as a function of M_{Inv} plotted for 5 p_T bins
- Avg M_{Inv} in each M_{Inv} bin decreases with decreasing <p_T>
- Significant asymmetry seen at mid-M_{Inv} and high <p_T>

Asymmetry (M_{Inv},p_T)

- A_{UT} as a function of M_{Inv} plotted for 5 p_T bins
- Avg M_{Inv} in each M_{Inv} bin decreases with decreasing <p_T>
- Significant asymmetry seen at mid-M_{Inv} and high <p_T>

Asymmetry (p_T,M_{Inv})

- A_{UT} as a function of p_T plotted for 5 M_{Inv} bins
- Avg p_T in each p_T bin slightly decreases with decreasing <M_{Inv}>
- Asymmetry rises significantly for high p_T and high M_{Inv}

Asymmetry (p_T,M_{Inv})

- A_{UT} as a function of p_T plotted for 5 M_{Inv} bins
- Avg p_T in each p_T bin slightly decreases with decreasing <M_{Inv}>
- Asymmetry rises significantly for high p_T and high M_{Inv}

Measurement Bias

- The events we choose to record are biased towards pions that fragment from quarks
- There should be no asymmetry for pion pairs that come from gluons
- To account for the bias a dilution correction is estimated in the top panel
 - Quarks/partons ratio of biased data over the quarks/partons ratio of unbiased sample
- Correction not applied to data

Results for $\eta^{\pi^+\pi^-} < 0$

<x> Coverage at STAR

 High precision asymmetries measured at relatively high <x> and high effective Q²

Conclusions

- Preliminary STAR data show high precision pion pair correlation asymmetries at large p_T and M_{Inv} for $\eta^{\pi+\pi-}>0$
- These results are at much higher Q² and sample a different mixture of quark flavors than SIDIS
- Results may be used to test universality of transverse polarization dependent quantities (SIDIS vs p+p)
- STAR results from 2012 polarized p+p collisions at Vs = 200 GeV coming soon (higher precision than 2006)