Review of Polarized Ion Sources

Anatoli Zelenski, BNL

- Polarization techniques.
- Polarized proton (deuteron) H⁻(D⁻) sources.
- Polarized ³He⁺⁺ ion sources.
 Summary.

SPIN 2014, October 22, 2014 北京大学物理学院 School of Physics, Peking University

Polarized proton beams in high-energy accelerators and colliders

- High intensity polarized negative H⁻, D⁻ sources.
- Optically Pumped Polarized Ion Source (OPPIS) for RHIC and Atomic Beam Source (ABS) with charge exchange ionizer at COSY, IUCF and NICA (Dubna).
- Charge-exchange (strip) injection.
- Equal (maximum possible) intensity of polarized and un-polarized beams in RHIC and COSY.

H[±], D[±] - Polarization techniques

Atomic Beam Sources

Separating sextupole magnet system.

Basic limitation on the polarized atomic beam intensity $\sim 10^{17}$ atoms/sec (~ 30 mA equivalent)

SPIN -TRANSFER POLARIZATION IN PROTON-Rb COLLISIONS.

Laser beam is a powerfull primary source of angular momentum: 10 W (795 nm) \rightarrow 4•10¹⁹ hv/sec \rightarrow 2 A, H⁰+ equivalent intensity. Feasibility of Multi-ampere polarized beams.

The RHIC OPPIS after upgrade (2011-12) with atomic hydrogen injector. Completed for 2013 Run.

Luminosity from Run-13 exceeds all previous p+p runs combined

Run 13 H-jet polarimeter, physics stores

Polarization measurements at 255 GeV in H-jet polarimeter, Run-2013, April-25-30

ABS: colliding beam ionizer and nearly resonant charge-exchange

Direct conversion of polarized atoms into polarized negative ions: (Haeberli, 1968)

- Colliding beam ionizer: $H^{0}\uparrow +Cs^{0} \Rightarrow H^{-}\uparrow + Cs^{+}$ (conversion efficiency ~ 5.10⁻³) 50 µA pulsed H⁻↑ beam (R. Gebel et. al. , COSY)
- Resonant charge-exchange plasma ionizer: H⁰↑ + D⁻ ⇒ H⁻↑ + D⁰ (conversion efficiency ~ 0,12) 4 mA of pulsed H⁻↑ (Belov et. al., INR RAS)

COSY/Julich polarized H-/D- Atomic Beam ion source with Cs colliding beam ionizer

Belov, SPIN2012, Dubna

COSY/Julich polarized H-/D- ion source

- H^{0} + $Cs^{0} \Rightarrow H^{-}$ + Cs^{+}
- $D^{0}\uparrow + Cs^{0} \Rightarrow D^{-}\uparrow + Cs^{+}$
- Polarized H⁻/D⁻ beam current up to 50 μA
- Pulse duration is up to 20 ms (injector - cyclotron)
- Number of polarized particles from the source per pulse is 5,5.10¹² ppp (for 20 ms pulse)
- Polarization of pol. protons injected into COSY ring ~90%, deutrons – 80-85%,

R.Gebel

COSY's Polarized Ion Source

 $\vec{\mathrm{H}}^{0}(\vec{\mathrm{D}}^{0}) + \mathrm{Cs}^{0} \rightarrow \vec{\mathrm{H}}^{-}(\vec{\mathrm{D}}^{-}) + \mathrm{Cs}^{+}$

Ref.: Haeberli , NIM 62(1968)

Ion Source Performance

R.Gebel

- With 6 pmA Cs @ 50 kV
- Gradient voltage -> energy spread
- High polarization is preferred
- Magnetic field -> emittance growth

Lambshift-Polarimeter

45 MeV Polarimeter

- pC elastic
- Nal scintillator @ 52.5° (Lab)
- Amplifier & TSCA for MHz Counter
- Pulse height analysis

Carbon targets (C, CH₂)

Chromox viewer

ULICH

Polarized source of H-/D- and H+/D+ ions with nearly resonant charge-exchange plasma ionizer. INR Moscow

Plasma generator for resonant charge-exchange ionizer

- In order to produce polarized negative hydrogen ions it was necessary to have deuterium plasma consisting mainly from D⁺ and D⁻ ions because slow polarized H⁻ ions can be easily destroyed in collisions with plasma electrons.
- Plasma injector producing deuterium plasma enriched by D⁻ ions with surface-plasma converter has been developed at INR.

Plasma generator for resonant charge-exchange ionizer

INR ionizer was successfully implemented at IUCF, where ~ 1.0 mA H⁻/D⁻ beam intensity was obtained with 80-85% polarization

surface-plasma converter has been developed at INR.

Polarized ion source for Dubna NICA project. (V.Fimushkin in this session)

- New atomic beam-type source with nearly resonant chargeexchange plasma ionizer is developed for NUCLOTRON
- Motivation: high intensity pulsed polarized ion beam is necessary due to use of one turn injection into the NUCLOTRON (8 μs pulse duration)
- Project goal:
 - 10 mA D⁺/H⁺
 - polarization ~ 90 % from nominal vector polarization + (-) 1 and tensor polarization + 1,-2

The polarized ions source for the JINR accelerator complex

The project assumes the design and construction of a universal high-intensity source of polarized deuterons (protons) using a charge-exchange plasma ionizer. The output D+ \uparrow (H+ \uparrow) current of the source is expected to be at a level of 10mA. The polarization will be up to 90% of the maximal vector (±1) for D+ \uparrow (H+ \uparrow) and tensor (+1, -2) for D+ \uparrow polarization. Realization of the project is carried out in close cooperation with INR of the RAS (Moscow).

H[±], D[±] - Polarization techniques

SPIN -TRANSFER POLARIZATION IN PROTON-Rb COLLISIONS.

Laser beam is a powerfull primary source of angular momentum: 10 W (795 nm) \rightarrow 4•10¹⁹ hv/sec \rightarrow 2 A, H⁰+ equivalent intensity. Feasibility of Multi-ampere polarized beams.

Pulsed OPPIS at TRIUMF, 1997-99. Second generation.

A pulsed H⁻ ion current of a 10 mA was obtained in 1999.

New OPPIS with atomic H⁰ injector layout

CP1 TMP1

Hydrogen atomic beam ionization efficiency in the He- cell.

H⁻ yield vs. H⁰ beam energy

Residual un-polarized H⁰ beam component suppression by the energy separation

He-ionizer cell and three-grid energy separation system

"Electro-dynamic" valve operation principle.

Force to the conducting plate in the (high ~ 3 T) magnetic field. $\vec{dF_A} = I[\vec{dl} \vec{B}]$

For I=100 A, L=5 cm, F=15 N).

Electro-dynamic valve .

"Electro-magnetic" He-gas valve.

1 – body, 2 – current vacuum feed-through, 3 – gas supply,
4 – flexible springing plate, 5 – "O" -ring.

"Fast Atomic Beam Source", BINP 2011

FABS 4-grid spherical Ion Optical System (IOS).

Superconducting Solenoid

Magnet designed and built by Cryomagnetics to BNL specification

\$390k Contract. Delivery- April 2011.

Actual delivery: February-2012. Almost a year delay.

Solenoid can operate with double hump field shape for ECR mode of operation or with a 3T flat field for use with external injector.

Acceptance tests completed in March. Installed at the source bench in May, 2012. Solenoid is fully re-condensing with no measurable helium losses.

Atomic Beam Mode, flattop.

Sodium-jet ionizer cell.

Transversal vapor flow in the N-jet cell. Reduces sodium vapor losses for 3-4 orders of magnitude, which allow the cell aperture increase up to 3.0 cm .

NL ~2·10¹⁵ atoms/cm² L ~ 2-3 cm

Reservoir– operational temperature. Tres. ~500 °C. Nozzle – Tn ~500 °C.

Collector- Na-vapor condensation: Tcoll.~120°C Trap- return line. T ~ 120 – 180 °C.

H⁻ beam acceleration to 35 keV at the exit of Na-jet ionizer cell.

Na-jet cell is isolated and biased to – 32 keV. The H⁻ beam is accelerated in a two-stage acceleration system.

Low Energy Beam Transport line.

Polarized injector, 200 MeV Linac and HEBT

Polarized H⁻ current-1.05 mA, after RFQ 750 keV Rb-98°

Rb-90, 200 MeV, T9-620uA

Polarization (at 200 MeV) vs. SCS magnetic field in He and Rb-cells

Source intensity and polarization.

- Reliable long-term ·operation of the source was demonstrated.
- Very high suppression of un-polarized beam component was demonstrated.
- Small beam emittance (after collimation for energy separation) and high transmission to 200 MeV.

Rb-cell, Temp., deg. C	81	86	91	96
Linac Current, µA	295	370	430	570
Booster Input ×10 ¹¹	4.9	6.2	7.3	9.0
Pol. %, at 200 MeV	84	83	80.5	78

H⁻ beam current and polarization at 200 MeV vs. Rb vapor thickness

Polarization in 200 MeV polarimeter

Polarization stability ~12 hrs, April 19

Rb-90deg, Booster input-9.3.10¹¹, 200 Mev-83.8%

Summary Targ	et Scans Target	Measurements	Emittance	Measurement
GS				
Target T	Farget1	0	rientation	Vertical
Measurement Tyj	pe			
Fixed Target		Start P	osition	100000
S HACE Furger		End Po	sition	109000
Profile By Swe	ep	Velocit	·У	6800
		Inserti	on Time	950000
		Retrac	ion Time	3220000
		Curren	t Velocity	0
		Curren	t Position	95000
		Peak P	osition	105667
Time To Run	4000	Elapsed Ti	me 21	L6
Time To Run	Polariz	Elapsed Til	AGS	~ 65-7
Time To Run		Elapsed Til	AGS	~ 65-7
Time To Run	4000 4000 Polariz surement Result 65.49	Elapsed Til Zation in 9 +/- 2.07	AGS	~ 65-7
Time To Run	Polariz	Elapsed Til Elapsed Til 2 + 7 - 2.07 $n_{ndf} = 0.58$	AGS	~ 65-7
Time To Run	Polariz surement Result 65.49 x ² /	Elapsed Til Elapsed Til 2 + / - 2.07 $n_{ndf} = 0.58$ nID: 61129	AGS	~ 65-7
Num Events Time To Run Polarization Meas	40000000 4000 Polariz surement Result 65.49 x ² ru Jun 1, 2	Elapsed Til Elapsed Til 2 +/- 2.07 0 ndf = 0.58 nID: 61129	AGS	~ 65-7
Time To Run	40000000 4000 Polariz surement Result 65.49 x ² ru Jun 1, 2 Source Polariz	Events Don Elapsed Til 2 + / - 2.07 $n_{ndf} = 0.58$ nID: 61129 014 12:51:32 PM ation: 83.78 +/	AGS	~ 65-7
Polarization Meas	40000000 4000 Polariz surement Result 65.49 x ² / ru Jun 1, 2 Source Polariz	Elapsed Tin Elapsed Tin 2 +/- 2.07 / ndf = 0.58 nID: 61129 014 12:51:32 PM ation: 83.78 +/-	AGS	~ 65-7
Time To Run Polarization Meas	40000000 4000 Polariz surement Result 65.49 x ² ru Jun 1, 2 Source Polariz	Events Don Elapsed Til 2 + / - 2.07 $n_{ndf} = 0.58$ nID: 61129 014 12:51:32 PM ation: 83.78 +/	AGS	~ 65-7

Polarization measurements at 255 GeV in H-jet polarimeter, Run-2013, April-25-30

Polarimetry at RHIC

- Lamb-shift polarimeter at the source energy.
- Absolute 200 MeV polarimeter after the Linac.
- P-Carbon CNI polarimeters in AGS and RHIC
- Absolute H-jet polarimeter in RHIC.

eRHIC-electron Ion Collider at BNL

Sources of polarized ³He ions

- Rice University, 1969: MEOP for ³He⁺
 - 16 keV, 8 particle μA at 11% polarization
- Univ. of Birmingham, 1973: Lamb Shift for ³He⁺⁺
 - + 29 keV, 50 particle μA at 65% polarization
- Laval University, 1980: Stern-Gerlach for ³He⁺
 - 12 keV, 100 particle nA at 95% polarization

Our Proposal¹

- RHIC's Electron Beam Ion Source Preinjector
 - Proven in recent RHIC runs, NASA Space Radiation Lab
- Metastability Exchange Optical Pumping
- Doubly ionize ³He⁺⁺ for injection
- ¹A. Zelenski, J. Alessi, ICFA Newsletter (2003).

³He++ ion source development at BNL in collaboration with MIT. (J. Maxwell talk in this session.)

RHIC's Electron Beam Ion Source

- 5 T Solenoid B Field; 1.5 m Ion Trap
- 20 keV electrons up to 10 A, 575 A/cm² Current Density
- Any species, switch between species in 1 sec

RHIC's Electron Beam Ion Source

- 5 T Solenoid B Field; 1.5 m Ion Trap
- 20 keV electrons up to 10 A, 575 A/cm² Current Density
- Any species, switch between species in 1 sec

5.3 MeV Helium3–Helium4 Polarimeter

- Transverse polarized ³He beam on unpolarized ⁴He at 5 torr¹⁰, early design by C. Epstein
- At 5.3 MeV, asymmetry due to polarization goes to 1 at 91° center of mass \rightarrow ^{3}He at 53.6°and 2.66 MeV
- Recoil ⁴He as a background at 1.83 MeV, so use 500 μ m partially depleted silicon detector for energy resolution
- At 50% polarization, expect 3.7% accuracy in 1 minute

¹⁰G.R. Plattner, A.D. Bacher. Physics Letters B 36.3 (1971)

Summary

- The present high intensity OPPIS and ABS sources provide required beam intensity for present and future pp, and ep Colliders.
- •In the future RHIC, eRHIC will require high-intensity ³He⁺⁺ ion beams.
- The high intensity ³He⁺⁺ ion source on the basis of new EBIS injector is under development at RHIC.