Spin－orbit Splitting in Oxygen Isotopes Studied via（ $\bar{p}, 2 p$ ）Reaction

Shoichiro KAWASE

Center for Nuclear Study，the University of Tokyo

the University of ТОКyo

Center for Nuclear Study

Contents

- Introduction
- Spin-orbit coupling
- Why oxygen?
- Exclusive measurement of the $(p, 2 p)$ reaction as a spectroscopic tool
- Experiments
- E349 exp.: ${ }^{16,18} \mathrm{O}(p, 2 p)$
- SHARAQ04 exp.: ${ }^{14,22,24} \mathrm{O}(p, 2 p)$ (analysis WIP)
- Summary

Contents

- Introduction
- Spin-orbit coupling
- Why oxygen?
- Exclusive measurement of the $(p, 2 p)$ reaction as a spectroscopic tool
- Experiments
- E349 exp.: ${ }^{16,18} \mathrm{O}(p, 2 p)$
- SHARAQ04 exp.: ${ }^{14,22,24} \mathrm{O}(p, 2 p)$ (analysis WIP)
- Summary

Spin-orbit coupling in nuclei

- Strong spin-orbit coupling ...
- is unique to nuclear system
- explains magic numbers of nuclei

Spin-orbit coupling in nuclei

- Strong spin-orbit coupling ...
- is unique to nuclear system
- explains magic numbers of nuclei
- (Dis)appearance of magic numbers in unstable region A. Ozawa et al. Phys. Rev. Lett., 84, 5493 (2000).
- Spin-orbit interaction makes dissolution of clusters (Cluster-shell competition)
H. Masui and N. Itagaki

The change of the spin-orbit coupling is a key to the understanding of the evolution of nuclear structure.

S. Kawase (Center for Nuclear Study, U Tokyo) @ SPIN2014, Peking University, China, October 2014

Goal of this study

- Experimentally, spin-orbit splitting is the most direct measure that we can determine.
- However, experimental data are scarce ... especially for unstable isotopes

Goal of This study:

Determine 1p proton spin-orbit splittings in oxygen isotopes as a function of neutron number

Why Oxygen?

\checkmark Proton magicity $(Z=8)$

- Shell model (single-particle orbit) picture goes well
\checkmark Moderate number of nucleons in the reach of ab initio calculations
\checkmark Isotopes from drip-line to drip-line are available at RIBF
- Systematic study in wide range of isospin is capable

Method: Exclusive measurement of the $(\vec{p}, 2 p)$ reaction

- Impulse picture > 200 MeV
- Selectivity populates single-hole states

- kinematics is not restricted by momentum matching
- Proton momentum in nucleus can be determined from momenta of two scattered protons
- Spin-parity can be determined by momentum dependence of differential cross section $(\rightarrow L)$ and analyzing power $A_{y}(\rightarrow J)$
- The best energy region is $200-300 \mathrm{MeV}$ because of the large spin correlation coefficient $C_{y y}$ of $N N$ scattering

S. Kawase (Center for Nuclear Study, U Tokyo) @ SPIN2014, Peking University, China, October 2014

Spin asymmetry of $(\vec{p}, 2 p)$

$(\vec{p}, 2 p)$ is an effective probe for the study of spin-parity of single particle orbit

$C_{y y}$ for pp scattering

Contents

- Introduction
- Spin-orbit coupling
- Why oxygen?
- Exclusive measurement of the $(p, 2 p)$ reaction as a spectroscopic tool
- Experiments
- E349 exp.: ${ }^{16,18} \mathrm{O}(p, 2 p)$
- SHARAQ04 exp.: ${ }^{14,22,24} \mathrm{O}(p, 2 p)$ (analysis WIP)
- Summary

E349 Collaboration

CNS, U. Tokyo S. Kawase, S. Ota, H. Tokieda, K. Kisamori, M. Takaki, Y. Kikuchi
RIKEN Nishina Center
T. Uesaka, M. Dozono
Toho U. T. Kawahara
RCNP, Osaka U.
A. Tamii, T. Suzuki
Kyoto U. T. Kawabata, N. Yokota, Y. Nozawa
Kyushu U. T. Noro, T. Wakasa, M. Okamoto
U. Miyazaki Y. Maeda, T. Saito, H. Miyasako

E349 Experiment: ${ }^{16,18} \mathrm{O}(p, 2 p)$

@ RCNP, Osaka U.
${ }^{18} \mathrm{O}(\mathrm{p}, 2 \mathrm{p})$ in normal kinematics

Polarized proton beam (Polarization $\sim 60 \%$)
@ $200 \mathrm{MeV}, 200 \mathrm{nA}$
$\mathrm{H}_{2}{ }^{18} \mathrm{O}$ ice target ($\sim 200 \mu \mathrm{~m}$ thick)
T. Kawabata et al., NIM A 459, 171 (2001).

AVF Cyclotron Facility
S. Kawase (Center for Nuclear Study, U Tokyo) @ SPIN2014, Peking University, China, October 2014

Separation Energy Spectra

- Each peak corresponds to a 1-hole state of ${ }^{17} \mathrm{~N}=$
- A new state was observed at $\sim 11 \mathrm{MeV}$
- Energy resolution ~ 300keV
(Main source $=$ multiple scat. in the ice target $)$
- Spin asymmetry is clearly opposite for 2 large peaks.

Separation Energy - Spin Up

Comparison w/ DWIA: Differential Cross Section

S. Kawase (Center for Nuclear Study, U Tokyo) @ SPIN2014, Peking University, China, October 2014

Comparison w/ DWIA: Differential Cross Section

S. Kawase (Center for Nuclear Study, U Tokyo) @ SPIN2014, Peking University, China, October 2014

Comparison w/ DWIA: Analyzing Power

Result for ${ }^{18} \mathrm{O}(\vec{p}, 2 p)$

spin-orbit splitting $=\operatorname{ESPE}(\mathrm{p} 3 / 2)-\operatorname{ESPE}(\mathrm{p} 1 / 2)$

$$
=6.58(11) \mathrm{MeV}
$$

Effective Single particle energy(ESPE): spectroscopic-factor-weighted mean of excitation energies

Spin-orbit splitting: ${ }^{18} \mathrm{O}$ vs ${ }^{16} \mathrm{O}$

Spin-orbit splitting of ${ }^{18} \mathrm{O}$ is narrower than that of ${ }^{16} \mathrm{O}$ by $\sim 400 \mathrm{keV}$!!

NN Tensor force narrows spin-orbit splitting?
proton 1 p spin-orbit splitting in oxygen isotope
 (2005).

Contents

- Introduction
- Spin-orbit coupling
- Why oxygen?
- Exclusive measurement of the $(p, 2 p)$ reaction as a spectroscopic tool
- Experiments
- E349 exp.: ${ }^{16,18} \mathrm{O}(p, 2 p)$
- SHARAQ04 exp.: ${ }^{14,22,24} \mathrm{O}(p, 2 p)$ (analysis WIP)
- Summary

SHARAQ04 Collaboration

CNS, U Tokyo

RIKEN Nishina Center

Toho U.
Tohoku U.
Kyushu U.
U. Miyazaki

Kyungpook Nat'I U., Korea
IPN Orsay, France
CEA Saclay, France
ORNL, USA
ICN-UNAM, Mexico
S. Kawase, T.L. Tang, S. Shimoura, K. Yako, S. Ota, S. Michimasa, H. Tokieda, H. Miya, K. Kisamori, M. Takaki, Y. Kubota, C.S. Lee, R. Yokoyama, T. Fujii, M. Kobayashi
T. Uesaka, M. Sasano, J. Zenihiro, H. Matsubara, M. Dozono, H. Sakai, T. Kubo, K. Yoshida, N. Inabe, Y. Yanagisawa, H. Takeda, K. Kusaka, N. Fukuda, D. Kameda, H. Suzuki
T. Kawahara
T. Wakui
T. Noro, T. Wakasa, S. Sakaguchi, J. Yasuda, T. Fukunaga
Y. Maeda
W. Kim, S.H. Hwang, S.S. Stepanyan
D. Beaumel
A. Obertelli
A. Galindo-Uribarri
E. Padilla-Rodal

SHARAQ04 experiment: ${ }^{14,22,24} \mathrm{O}(\vec{p}, 2 p)$

Facility	RIKEN RIBF
Reaction	$(\vec{p}, 2 p)$ in inverse kinematics
Beam	${ }^{14} \mathrm{O},{ }^{22} \mathrm{O},{ }^{24} \mathrm{O} @ \sim 250 \mathrm{MeV} / \mathrm{u}$
Target	Polarized proton target $\sim 100 \mathrm{mg} / \mathrm{cm}^{2}$

S. Kawase (Center for Nuclear Study, U Tokyo) @ SPIN2014, Peking University, China, October 2014

Polarized proton target

- Material: Naphthalene + Pentacene ($0.005 \mathrm{~mol} \%$)

- Polarization method: Triplet Dynamic Nuclear Polarization (DNP)
- Low magnetic field $\sim 60 \mathrm{mT}$
- High temperature $\sim \mathrm{LN}_{2}$
- Polarization: 31(7)\% (calibrated with pp elastic scattering)

Preliminary result for ${ }^{14} \mathrm{O}(\mathrm{p}, 2 \mathrm{p})$

S. Kawase (Center for Nuclear Study, U Tokyo) @ SPIN2014, Peking University, China, October 2014

${ }^{22} \mathrm{O}(p, 2 p)$ spectrum

Polarization analysis has not been done yet.

multipole decomposition analysis (MDA) will be done in near future.

Summary \& Outlook

- Goal: determine the proton spin-orbit splitting in oxygen isotopes
- The exclusive measurement of the $(\vec{p}, 2 p)$ reaction is a powerful tool for the study of single-particle orbit and spin-orbit splitting in nuclei
- 1p proton spin-orbit splitting of ${ }^{18} \mathrm{O}$ was determined to be $6.58(11) \mathrm{MeV}$ through an ${ }^{18} \mathrm{O}(\vec{p}, 2 p)$ reaction measurement.
- Effectiveness of the method was clearly demonstrated
- An ${ }^{14,22,24} \mathrm{O}(\vec{p}, 2 p)$ reaction measurement was carried out at RIKEN RIBF
- We obtained 7.3(4) MeV of 1 p proton spin-orbit splitting in ${ }^{14} \mathrm{O}$
- Analysis on polarization observables will be done in near future

Backup slides

Polarized Target:

Operation under low magnetic field (65 mT) and high temperature $\left(-160^{\circ} \mathrm{C}\right)$ are the advantage of the polarized target.

1. Low magnetic field does not trap low energy protons.
2. High temperature is easier to operate.

The proton polarization is based on the hyperfine coupling between electron(s) and proton(s). The steps are:

1. Excited the electrons to polarized triplet state by Laser.
2. Apply a microwave to matching the proton precession frequency with that of electron (Dynamic Nuclear Polarization).
3. Spin polarization diffused, stored and accumulated.

Singlet states

Triplet states
Pentacene molecule

Magnitude of Polarization

- Spin-up and spin-down measurement

$$
Y_{L}=\sqrt{Y_{L}^{\uparrow} Y_{R}^{\downarrow}}, \quad Y_{R}=\sqrt{Y_{R}^{\uparrow} Y_{L}^{\downarrow}}
$$

$$
\operatorname{asym}=A_{y} P=\frac{Y_{L}-Y_{R}}{Y_{L}+Y_{R}}
$$

- Magnıtuae:
$-30.5 \% \pm 7.3 \%$.

Comparison with DWIA calculation

- DWIA: Distorted-Wave Impulse Approximation
- Computer code: THREEDEE
N. S. Chant et al., Phys. Rev. C 15, 57 (1977).
- Single particle wave function: Schrödinger eq. w/ Woods-Saxon pot.
- Optical potential: Energy-dependent atomic-mass-dependent global Dirac phenomenology
E. D. Cooper et al., Phys. Rev. C 47, 297 (1993).
- NN scattering amplitude: phase shift analysis by Arndt
R. A. Arndt et al., Phys. Rev. D 35, 128 (1987).

Spectroscopic factor

$$
C^{2} S:=\frac{\sigma_{\exp }}{\sigma_{\mathrm{DWIA}}}
$$

- \quad DDwIA was calculated by using DWIA calculation code THREEDEE
N. S. Chant et al., Phys. Rev. C 15, 57 (1977).
- optical potential: Energy-dependent atomic-mass dependent global Dirac potential 297 (1993).
- NN scattering amplitude by Arndt
R. A. Arndt et al., Phys. Rev. D 35, 128 (1987).

state	$\sigma_{\exp }(\mu \mathrm{b})$	$\sigma_{\text {DWIA }}(\mu \mathrm{mb})$	$C^{2} S$	$C^{2} S /$ Shell Limit		
g.s. (1/2-)	$229(12)$	166	$1.38(7)$	$0.69(4)$	The sum of $C^{2} S$ is slightly smaller than expected from	
3.5 MeV (3/2-)	$305(17)$	161	$1.89(11)$	$0.47(3)$	$0.71(4)$	the quenching effect of (p,2p)
$15 \mathrm{MeV}(3 / 2-)$	$92(14)$	97.8	$0.94(14)$	$0.24(4)$		

Picture of SHARAQ04 Setup

Reaction Identification

Reference: ${ }^{14} \mathrm{C}(p, d)$ spectrum

- strength is concentrated to 3 states:
- g.s. (1/2-)
- 3.5 MeV(3/2-)
- $15 \mathrm{MeV}(3 / 2-)$: IAS of ${ }^{13} \mathrm{~B}$

M.Yasue et al., Nucl.Phys. A509, 141 (1990)

Fig. 1. Sample momentum spectra for the ${ }^{14} \mathrm{C}(p, d)^{12} \mathrm{C}$ restion obtained (a) an $E_{\mathrm{p}}=35.0 \mathrm{MeV}$ and $\theta_{\mathrm{nb}}=30^{\circ}$ for $E_{5}=0-10 \mathrm{MeV}$, and (b) at $E_{\mathrm{p}}=40.1 \mathrm{McV}$ and $\theta_{\mathrm{La}}=10^{\circ}$ for $E_{\mathrm{c}}=11-18 \mathrm{MeV}$ (c) is sume as (a) bui counis are summed over 8 channels for $E_{2}=6-11 \mathrm{MeV}$ (see nesu page).
S. Kawase (Center for Nuclear Study, U Tokyo) @ SPIN2014, Peking University, China, October 2014

$(\vec{p}, 2 p)$ in inverse kinematics

- Less beam intensity
- compensated with larger acceptance for recoil protons
- Identifiability of residual nucleus
- Require polarized proton target for spin observable

....... Data are scarce...

Observables

- Proton separation energy

$$
S_{p}=-m_{p}(\gamma-1)-\gamma\left(T_{1}+T_{2}\right)+\beta \gamma\left(p_{1 \|}+p_{2 \|}\right)-\frac{q^{2}}{2 m_{r}}
$$

Spectra for ${ }^{24} \mathrm{O}(p, 2 p) \mathrm{N}$

DWIA calculation for ${ }^{14} \mathrm{O}(\mathrm{p}, 2 \mathrm{p})$

- ${ }^{14} \mathrm{O}(\mathrm{p}, 2 \mathrm{p})$
- $\mathrm{T}_{1}=100 \mathrm{MeV}$

DWIA calculation for ${ }^{14} \mathrm{O}(\mathrm{p}, 2 \mathrm{p})$

Reaction Position

- more material in target holder \rightarrow larger luminosity and background
- beam position was lower than center of the target

