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Talk Outline
Cartoon Outline

QCD and related theories at large–N

We consider SU(N) gauge theory with nf light Dirac fermions in
the adjoint representation, in the large–N limit.

nf = 0: this is the large–N limit of QCD.

nf = 1/2: N=1 supersymmetric Yang–Mills (SYM).

nf = 1: thought to be confining in the infrared.

nf = 2: thought to have an IRFP (InfraRed Fixed Point)

Using large–N volume independence (Eguchi–Kawai reduction),
want to simulate these theories on a single site lattice.
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Talk Outline

Large–N volume reduction

nf = 0: compare to QCD, test of reduction

nf = 2: very different to QCD
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Why large N?

Fundamental
Antisymmetric
Symmetric
Adjoint

MWTC

      

[arXiv:hep-ph/0611341]

nf = 0: Close relative of
SU(3) QCD

nf = 2: Existence of fixed
point in 2–loop
perturbation theory is
independent of N

nf = 2: γ∗ in 2–loop
perturbation theory is
independent of N
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Lattice Field Theory

Formulate field theory on a discrete set of
space–time points:

L̂4 points, lattice spacing a

Physical volume L4 = (L̂a)4

Lattice provides regularisation:

UV cut–off: 1/a

IR cut–off: 1/L
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Lattice Field Theory

The simplest lattice discretisation of the Yang–Mills action is

SYM = Ncb
∑
x

∑
µ<ν

Tr
(
Uµ(x)Uν(x + µ)U†µ(x + ν)U†ν(x) + h.c .

)
where b = 1

λ = 1
g2Nc

is the inverse bare ’t Hooft coupling, held
fixed as Nc →∞.
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Large–N Volume Independence

Eguchi-Kawai ’82

In the limit Nc →∞, the properties of U(Nc) Yang–Mills theory
on a periodic lattice are independent of the lattice size.

SYM ≡ SEK = Ncb
∑
µ<ν

Tr
(
UµUνU

†
µU
†
ν + h.c.

)
where b = 1

λ = 1
g2Nc

is the inverse bare ’t Hooft coupling, held
fixed as Nc →∞.
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Conditions

...but it turns out only

for single–trace observables defined on the original lattice of
side L, that are invariant under translations through multiples
of the reduced lattice size L′

and if the U(1)d center symmetry is not spontaneously broken,
i.e. on the lattice the trace of the Polyakov loop vanishes.
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Twisted Reduction

Gonzalez–Arroyo Okawa ’83

Impose twisted boundary conditions, such that the classical
minimum of the action preserves a Z 2

N subgroup of the center
symmetry.

STEK = Ncb
∑
µ<ν

Tr
(
zµνUµUνU

†
µU
†
ν + h.c .

)
zµν = exp{2πinµν/N} = z∗νµ

Gonzalez–Arroyo Okawa [arXiv:1005.1981]
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Twisted Reduction

Original TEK: k = 1, center-symmetry breaks for N & 100

Choice of flux k

nµν = k
√
N, kk̄ = 1 mod

√
N, θ̃ = 2πk̄/

√
N

To take 1/N → 0 limit, choose k such that

k/
√
N > 1/9

θ̃ = constant

Garcia–Perez Gonzalez–Arroyo Okawa [arXiv:1307.5254]
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Twisted Reduction

Twisted reduction: L̂→
√
N

Single site lattice, lattice spacing a

Physical volume L4 = (
√
Na)4

Lattice provides regularisation:

UV cut–off: 1/a

IR cut–off: 1/
√
N
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Polyakov Loop vs 1/N
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Wilson Flow

The Wilson flow evolves the gauge field according to

Flow Equation

∂Bµ
∂t

= DνGνµ, Bµ|t=0 = Aµ

where Aµ is the gauge field, and t is the flow time.
This integrates out UV fluctuations above a scale µ = 1/

√
8t (i.e.

smears observables over a radius
√

8t)
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Wilson Flow of t2〈E 〉

The action density E = GµνGµν as a function of flow time can be
used to define a scale t0

Definition of scale t0

1
N t

2
0 〈E (t0)〉 = 0.1

Perturbative expansion of E at small flow time t

1
N t

2E (t) =
3λ

128π2

[
1 +

λ

16π2
(11γE/3 + 52/9− 3 ln 3)

]
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Comparison to SU(3) Perturbation Theory
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2-loop PT [with SU(3) Lambda=0.572(50)*sqrt(8t_0)].
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Running of the coupling: Step Scaling

Step scaling - change in
coupling from L̂ to sL̂

u = g2(λ, sL̂)

σ(u, s) = g2(λ, sL̂)

Now tune bare parameters
until g2(β′, L) = u′

Repeat
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Running of the coupling: Discrete Beta–Function
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Confining vs Conformal Cartoon

u

Running

Conformal

Walking

q

Walking
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β

IRFPUVFP

Conformal

u
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Scheme dependence

Walking/Running of coupling is scheme dependent

Want to measure physical, scheme independent quantities:

Existence of fixed point

Mass anomalous dimension at the fixed point
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Wilson Flow: nf = 0 vs nf = 2

 0

 0.05

 0.1

 0.15

 0.2

 0  0.5  1  1.5  2

t^
2
<

E
>

t/t_0 (using n_f=0 values of t_0)

t^2<E>

nf=2, b=0.360, N=289
nf=2, b=0.350, N=289
nf=0, b=0.360, N=289
nf=0, b=0.350, N=289

Liam Keegan Lattice field theory beyond QCD



Introduction
Large N Volume Indepence

nf = 0
nf = 2

Conclusion

Confining vs Conformal
Wilson Flow
Mass Anomalous Dimension

Mode Number Method

In the infinite volume, chiral limit, and for small eigenvalues,

Spectral density of the Dirac Operator

lim
m→0

lim
V→∞

ρ(ω) ∝ ω
3−γ∗
1+γ∗ + . . .

Integral of this is the mode number, which is just counting the
number of eigenvalues of the Dirac Operator on the lattice.

Fitting this to the above form can give a precise value for γ,
as done recently for MWT by Agostino Patella.

DeGrand [arXiv:0906.4543], Del Debbio et. al. [arXiv:1005.2371],
Patella [arXiv:1204.4432], Hasenfratz et. al. [arXiv:1303.7129]

Liam Keegan Lattice field theory beyond QCD



Introduction
Large N Volume Indepence

nf = 0
nf = 2

Conclusion

Confining vs Conformal
Wilson Flow
Mass Anomalous Dimension

Mode Number Fit Range

 

m

g

IRFP

UVFP

RG flows in mass–deformed CFT:

Flow from UV (high eigenvalues) to IR
(low eigenvalues)

Finite mass drives us away from FP in
the IR

Interested in intermediate blue region

1√
N
� m� ΩIR < Ω < ΩUV � 1

a
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Eigenvalue density histogram

Histogram shows change between the two regimes as the volume is
increased.
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N=289, 2000 eigenvalues, 1 config
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Histogram shows change between the two regimes as the volume is
increased.
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Mode Number Example Fit b = 0.35, κ = 0.16

N = 289: A = 1.16× 10−4, (am)2 = 0.068, γ = 0.258
N = 121: A = 1.04× 10−4, (am)2 = 0.108, γ = 0.417
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Mass anomalous dimension results [preliminary]
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Conclusion and Future Work

Promising initial results.

Twisted volume reduction seems to work

nf = 0 at large N in very good agreement with N=3

Future Work / In Progress:

nf = 2: Running coupling study, add lighter masses, different
bare couplings.

Comparison with nf = 1, nf = 1/2
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