Lattice field theory beyond QCD

Liam Keegan

Jan 2014

CERN

Margarita García Peréz, Antonio González-Arroyo, Masanori Okawa

Liam Keegan Lattice field theory beyond QCD

QCD and related theories at large–N Talk Outline Cartoon Outline

QCD and related theories at large-N

We consider SU(N) gauge theory with n_f light Dirac fermions in the adjoint representation, in the large-N limit.

- $n_f = 0$: this is the large-N limit of QCD.
- $n_f = 1/2$: $\mathcal{N}=1$ supersymmetric Yang–Mills (SYM).
- $n_f = 1$: thought to be confining in the infrared.
- $n_f = 2$: thought to have an IRFP (InfraRed Fixed Point)

Using large–N volume independence (Eguchi–Kawai reduction), want to simulate these theories on a single site lattice.

・ロト ・同ト ・ヨト ・ヨト

QCD and related theories at large–N Talk Outline Cartoon Outline

- Large–N volume reduction
- $n_f = 0$: compare to QCD, test of reduction
- $n_f = 2$: very different to QCD

Image: A image: A

Large N Volume Indepence $n_f = 0$ $n_f = 2$ Conclusion QCD and related theories at large–N Talk Outline Cartoon Outline

Cartoon of Method

э

(日) (同) (三) (三)

Large N Volume Indepence $n_f = 0$ $n_f = 2$ Conclusion QCD and related theories at large–N Talk Outline Cartoon Outline

Cartoon of Method

(日) (同) (三) (三)

Large N Volume Indepence $n_f = 0$ $n_f = 2$ Conclusion QCD and related theories at large–N Talk Outline Cartoon Outline

Cartoon of Method

Large N Volume Indepence $n_f = 0$ $n_f = 2$ Conclusion QCD and related theories at large–N Talk Outline Cartoon Outline

Cartoon of Method

Why large N?

Why large N? Lattice Field Theory Eguchi-Kawai Reduction Twisted Reduction

- n_f = 0: Close relative of SU(3) QCD
- n_f = 2: Existence of fixed point in 2–loop perturbation theory is independent of N
- n_f = 2: γ_{*} in 2-loop perturbation theory is independent of N

Why large N? Lattice Field Theory Eguchi-Kawai Reduction Twisted Reduction

Lattice Field Theory

Formulate field theory on a discrete set of space-time points:

- \hat{L}^4 points, lattice spacing a
- Physical volume $L^4 = (\hat{L}a)^4$

Lattice provides regularisation:

- UV cut-off: 1/a
- IR cut-off: 1/L

(日) (同) (三) (三)

Why large N? Lattice Field Theory Eguchi-Kawai Reduction Twisted Reduction

Lattice Field Theory

The simplest lattice discretisation of the Yang-Mills action is

$$S_{YM} = N_c b \sum_{x} \sum_{\mu < \nu} Tr\left(U_\mu(x)U_\nu(x+\mu)U_\mu^{\dagger}(x+\nu)U_\nu^{\dagger}(x) + h.c.\right)$$

where $b = \frac{1}{\lambda} = \frac{1}{g^2 N_c}$ is the inverse bare 't Hooft coupling, held fixed as $N_c \to \infty$.

(日) (同) (三) (三)

Why large N? Lattice Field Theory Eguchi-Kawai Reduction Twisted Reduction

Large–N Volume Independence

Eguchi-Kawai '82

In the limit $N_c \rightarrow \infty$, the properties of U(N_c) Yang–Mills theory on a periodic lattice are independent of the lattice size.

$$S_{YM} \equiv S_{EK} = N_c b \sum_{\mu < \nu} Tr \left(U_{\mu} U_{\nu} U_{\mu}^{\dagger} U_{\nu}^{\dagger} + h.c. \right)$$

where $b = \frac{1}{\lambda} = \frac{1}{g^2 N_c}$ is the inverse bare 't Hooft coupling, held fixed as $N_c \to \infty$.

・ロン ・部 と ・ ヨ と ・ ヨ と …

Why large N? Lattice Field Theory Eguchi-Kawai Reduction Twisted Reduction

...but it turns out only

- for single-trace observables defined on the original lattice of side *L*, that are invariant under translations through multiples of the reduced lattice size *L*'
- and if the U(1)^d center symmetry is not spontaneously broken,
 i.e. on the lattice the trace of the Polyakov loop vanishes.

< fi> ↓ fi

Why large N? Lattice Field Theory Eguchi-Kawai Reduction Twisted Reduction

Twisted Reduction

Gonzalez-Arroyo Okawa '83

Impose twisted boundary conditions, such that the classical minimum of the action preserves a Z_N^2 subgroup of the center symmetry.

$$S_{TEK} = N_c b \sum_{\mu <
u} Tr \left(z_{\mu
u} U_{\mu} U_{
u} U_{\mu}^{\dagger} U_{
u}^{\dagger} + h.c.
ight)$$
 $z_{\mu
u} = exp\{2\pi i n_{\mu
u}/N\} = z_{
u\mu}^*$

Gonzalez-Arroyo Okawa [arXiv:1005.1981]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why large N? Lattice Field Theory Eguchi-Kawai Reduction Twisted Reduction

Twisted Reduction

Original TEK: k = 1, center-symmetry breaks for $N \gtrsim 100$

Choice of flux k

$$n_{\mu
u} = k\sqrt{N}, \quad k\bar{k} = 1 \mod \sqrt{N}, \quad \tilde{ heta} = 2\pi \bar{k}/\sqrt{N}$$

To take $1/N \rightarrow 0$ limit, choose k such that

•
$$k/\sqrt{N} > 1/9$$

• $\tilde{\theta} = \text{constant}$

Garcia-Perez Gonzalez-Arroyo Okawa [arXiv:1307.5254]

< ロ > < 同 > < 三 > <

Why large N? Lattice Field Theory Eguchi-Kawai Reduction Twisted Reduction

Twisted Reduction

Twisted reduction: $\hat{L} \rightarrow \sqrt{N}$

• Single site lattice, lattice spacing a

▲□ ► ▲ □ ► ▲

• Physical volume $L^4 = (\sqrt{N}a)^4$

Lattice provides regularisation:

- UV cut-off: 1/a
- IR cut-off: $1/\sqrt{N}$

Large N Volume Indepence $n_f = 0$ $n_f = 2$

Reduction Wilson Flow Running of the coupling

Polyakov Loop vs 1/N

< 1 →

★ ∃ → < ∃</p>

Reduction Wilson Flow Running of the coupling

The Wilson flow evolves the gauge field according to

Flow Equation

$$\frac{\partial B_{\mu}}{\partial t} = D_{\nu}G_{\nu\mu}, \quad B_{\mu}|_{t=0} = A_{\mu}$$

where A_{μ} is the gauge field, and t is the flow time. This integrates out UV fluctuations above a scale $\mu = 1/\sqrt{8t}$ (i.e. smears observables over a radius $\sqrt{8t}$)

/₽ ► < ∃ ►

 Introduction
 Reduction

 Large N Volume Indepence
 $n_f = 0$
 $n_f = 0$ Wils

 $n_f = 2$ Runn

Reduction Wilson Flow Running of the coupling

Wilson Flow of $t^2 \langle E \rangle$

The action density $E = G_{\mu\nu}G_{\mu\nu}$ as a function of flow time can be used to define a scale t_0

Definition of scale t_0 $rac{1}{N}t_0^2\langle E(t_0)
angle=0.1$

Perturbative expansion of E at small flow time t

$$\frac{1}{N}t^{2}E(t) = \frac{3\lambda}{128\pi^{2}}\left[1 + \frac{\lambda}{16\pi^{2}}(11\gamma_{E}/3 + 52/9 - 3\ln 3)\right]$$

Introduction Large N Volume Indepence $n_f = 0$ $n_f = 2$

Reduction Wilson Flow Running of the coupling

Comparison to SU(3) Perturbation Theory

t^2<E>

< 17 ▶

Reduction Wilson Flow Running of the coupling

Running of the coupling: Step Scaling

- Step scaling change in coupling from \hat{L} to $s\hat{L}$
- $u = \overline{g}^2(\lambda, s\hat{L})$
- $\sigma(u,s) = \overline{g}^2(\lambda,s\hat{L})$
- Now tune bare parameters until $\overline{g}^2(\beta',L) = u'$

・ 同 ト ・ ヨ ト ・ ヨ ト

Repeat

Reduction Wilson Flow Running of the coupling

Running of the coupling: Step Scaling

- Step scaling change in coupling from L̂ to sL̂
- $u = \overline{g}^2(\lambda, s\hat{L})$

•
$$\sigma(u,s) = \overline{g}^2(\lambda,s\hat{L})$$

• Now tune bare parameters until $\overline{g}^2(\beta', L) = u'$

・ 同 ト ・ ヨ ト ・ ヨ ト

Repeat

Reduction Wilson Flow Running of the coupling

Running of the coupling: Step Scaling

- Step scaling change in coupling from L̂ to sL̂
- $u = \overline{g}^2(\lambda, s\hat{L})$

•
$$\sigma(u,s) = \overline{g}^2(\lambda,s\hat{L})$$

• Now tune bare parameters until $\overline{g}^2(\beta', L) = u'$

▲ □ ▶ ▲ □ ▶ ▲

Repeat

Reduction Wilson Flow Running of the coupling

Running of the coupling: Step Scaling

Introduction Large N Volume Indepence $n_f = 0$ $n_f = 2$

Reduction Wilson Flow Running of the coupling

Running of the coupling: Discrete Beta-Function

Liam Keegan Lattice field theory beyond QCD

Confining vs Conformal Wilson Flow Mass Anomalous Dimension

Confining vs Conformal Cartoon

э

Confining vs Conformal Wilson Flow Mass Anomalous Dimension

Scheme dependence

- Walking/Running of coupling is scheme dependent
- Want to measure physical, scheme independent quantities:
 - Existence of fixed point
 - Mass anomalous dimension at the fixed point

▲ □ ▶ ▲ □ ▶ ▲

Large N Volume Indepence $n_f = 0$ $n_f = 2$

Confining vs Conformal Wilson Flow Mass Anomalous Dimension

Wilson Flow: $n_f = 0$ vs $n_f = 2$

Liam Keegan Lattice field theory beyond QCD

Confining vs Conformal Wilson Flow Mass Anomalous Dimension

Mode Number Method

In the infinite volume, chiral limit, and for small eigenvalues,

Spectral density of the Dirac Operator

$$\lim_{m\to 0} \lim_{V\to\infty} \rho(\omega) \propto \omega^{\frac{3-\gamma_*}{1+\gamma_*}} + \dots$$

- Integral of this is the mode number, which is just counting the number of eigenvalues of the Dirac Operator on the lattice.
- Fitting this to the above form can give a precise value for γ , as done recently for MWT by Agostino Patella.

DeGrand [arXiv:0906.4543], Del Debbio et. al. [arXiv:1005.2371], Patella [arXiv:1204.4432], Hasenfratz et. al. [arXiv:1303.7129]

Confining vs Conformal Wilson Flow Mass Anomalous Dimension

Mode Number Fit Range

RG flows in mass-deformed CFT:

- Flow from UV (high eigenvalues) to IR (low eigenvalues)
- Finite mass drives us away from FP in the IR
- Interested in intermediate blue region

•
$$\frac{1}{\sqrt{N}} \ll m \ll \Omega_{IR} < \Omega < \Omega_{UV} \ll \frac{1}{a}$$

Confining vs Conformal Wilson Flow Mass Anomalous Dimension

Eigenvalue density histogram

Histogram shows change between the two regimes as the volume is increased.

Confining vs Conformal Wilson Flow Mass Anomalous Dimension

Eigenvalue density histogram

Histogram shows change between the two regimes as the volume is increased.

Liam Keegan Lattice field theory beyond QCD

Confining vs Conformal Wilson Flow Mass Anomalous Dimension

Eigenvalue density histogram

Histogram shows change between the two regimes as the volume is increased.

Liam Keegan Lattice field theory beyond QCD

Confining vs Conformal Wilson Flow Mass Anomalous Dimension

Eigenvalue density histogram

Histogram shows change between the two regimes as the volume is increased.

Confining vs Conformal Wilson Flow Mass Anomalous Dimension

Mode Number Example Fit b = 0.35, $\kappa = 0.16$

 $N = 289: A = 1.16 \times 10^{-4}, (am)^2 = 0.068, \gamma = 0.258$ $N = 121: A = 1.04 \times 10^{-4}, (am)^2 = 0.108, \gamma = 0.417$

Liam Keegan Lattice field theory beyond QCD

Confining vs Conformal Wilson Flow Mass Anomalous Dimension

Mode Number Example Fit b = 0.35, $\kappa = 0.16$

 $N = 289: A = 1.16 \times 10^{-4}, (am)^2 = 0.068, \gamma = 0.258$ $N = 121: A = 1.04 \times 10^{-4}, (am)^2 = 0.108, \gamma = 0.417$

Mode Number fit

Liam Keegan Lattice field theory beyond QCD

Confining vs Conformal Wilson Flow Mass Anomalous Dimension

Mass anomalous dimension results [preliminary]

Conclusion and Future Work

- Promising initial results.
 - Twisted volume reduction seems to work
 - $n_f = 0$ at large N in very good agreement with N=3

Future Work / In Progress:

- *n_f* = 2: Running coupling study, add lighter masses, different bare couplings.
- Comparison with $n_f = 1, n_f = 1/2$