
Using and debugging HepMC content

for Tauola++ and Photos++ projects

Tomasz Przedziński
Jagiellonian University, Kraków, Poland

Plan:

 HepMC as an infrastructure for communication

 Use of HepMC in our projects

 Debugging HepMC content: issues and suggestions

 Questions regarding the plans for HepMC 3.0

 Summary

 Proposal: database of unusal events contents

 New functionality proposal: vertex versioning

21/01/2014 2

HepMC as an infrastructure for communication

 Most simulations use an event record in a chain of analysis where
next tool uses output from the previous one.

 If at any step of the analysis event record content is
flawed/misunderstood, next steps may be impossible to perform. Or
worse: they will be performed with faulty results.

 We often find problems with HepMC content:
 non-standard status codes (history entries, etc.)

 non-tree structure (decays with more than two daughters, loops)

 4-momentum non-conservation

 unphysical particles in decay trees (e.g. pomerons)

 and many more

 Knowing that such exceptions can occur (and often must, because of
physics extensions) in the event record, we have to prepare special
arrangement for each of such problems (which do not destroy other
cases as well).

 Often we have no influence over on what events our tools are used –
we cannot force experiments (and authors of other MC tools) to use
any standard. When such problems occur (at unexpected moment),
we have to extend our applications.

 Our main concern with HepMC is to identify problems with
communication; we need tools for debugging HepMC content.

21/01/2014 3

21/01/2014 4

Since v3.54 Photos++ is fully

in C++ and has its own namespace

21/01/2014 5

All these programs

require that HepMC

structure is a tree,

which often isn't true.

If it's not, we have to

reconstruct appropriate

branching.

Worst-case scenario is if

there’s a loop in a

critical place in the

tree…

Since v3.54 Photos++ is fully

in C++ and has its own namespace

21/01/2014 6

Tauola++ modifies

branching at end of the

tree (relatively easy),

but uses two earlier

branchings to calculate

matrix elements.

Photos++ modifies

single branching and

(only in simple way)

consecutive decays.

Uses earlier branchings

only in NLO matrix

calculations.

Since v3.54 Photos++ is fully

in C++ and has its own namespace

Use of HepMC in our projects

 Common algorithms for these projects:

 Find mothers, grandmothers and stable daughters of a particle

 Find first/last version of a particle (𝑍0 → 𝑍0 → 𝑍0 → 𝜏+𝜏−)

 Add/modify particles and vertices

 Backup existing particles ("history entries")

 Event content validation:

 Validate tree structure (or create proper tree branching on the fly)

 Check (or restore) 4-momentum conservation in vertex

 Check 4-momentum conservation in the whole event

 Check differences before/after processing by MC tool

21/01/2014 7

Debugging HepMC content:

Issues and suggestions

21/01/2014 8

Debugging HepMC content: issues and suggestions
Printout precision

 When we get bug report from experiments, usually the first bit of

feedback is the log of the program run. This log usually has several

HepMC events printed out using GenEvent::print(). IO_GenEvent

has precision(int) function, but GenEvent::print() uses

GenParticle::operator<<, which always uses ostr.precision(2).

 This precision, useful when looking at the tree structure, in many

cases, especially when debugging MC generators, is not enough.

 Since GenEvent::print() is the most useful printout for debugging

for us as well, one of the first "hacks" we’ve made years ago was to

change this precision to 8 digits.

21/01/2014 9

 This solution works for us, but it still does not help us analyze user

feedback.

 Having GenEvent::print(int precision=2) would be useful (and

backward-compatible with the default use of this function) even if

not exactly straightforward to do because of the use of

GenParticle::operator<<

 We could then encourage experiments to send us feedback with

GenEvent::print(8) while they could still use GenEvent::print() in

their logs to conserve disk space.

21/01/2014 10

Debugging HepMC content: issues and suggestions
Printout precision

Debugging HepMC content: issues and suggestions
Momentum conservation checks

 Some time ago I wrote a ticket about misleading name of the

function GenVertex::check_momentum_conservation(). There exists

GenParticle.momentum() which is of FourVector class, but

check_momentum_conservation() checks only 3-momentum

conservation.

 For theoretical physicist, word "momentum" in almost any context,

means "4-momentum". This is worth mentioning, because this

mismatch in convention made us confused and made us redo a lot of

tests that were relying on this method to check 4-momentum

conservation.

 It has been resolved in HepMC by indicating in the comment of this

function, that it’s a 3-momentum check. However, we sill only use

4-momentum conservation checks.

 HepMC does not have a function to do it; we had to write our own.

21/01/2014 11

Debugging HepMC content: issues and suggestions
Vertex and event momentum conservation checks

 In terms of vertex 4-momentum conservation check: it would be

useful if GenVertex could have a printout option that shows in/out

vertex sums and difference between these sums.

 For the most-precise algorithms the result of the momentum

conservation check is not enough. We have to know exactly which

components of the 4-vector are not conserved.

 In terms of event 4-momentum conservation check: a function which

checks difference between all stable products and the incoming

beams would be useful as well.

 This is a typical test for MC generators (from HEPEVT times) often

also performed before detector simulation. This test serves as the

most-generic indicator of a bug and we often use it to pick unusual

events that may not be correctly handled by our tools.

21/01/2014 12

Debugging HepMC content: issues and suggestions
Small I/O issues

 Cutting out a sub-tree of an event is one of the common things we do

(to save space) when writing events to disk.

 However, when doing so (saving, for example: 𝑋, 𝑌 → 𝑍0 → 𝜏+𝜏−) we’ve

found out that saving production_vertex() and end_vertex() of

𝑍0 skips particles X,Y. Creating new vertex with X,Y as outgoing

particles is needed to save them to output file.

 I don’t know if it’s an intended feature (I couldn’t find it in documentation). It

might be a bug because in such cases one would expect that full content of

GenEvent (displayed by GenEvent::print()) is written to a file.

 On a side note: declaring X and Y as incoming beams does not help.

 When merging multiple HepMC files into one, we find

headers/footers to be problematic. However, it’s a standard to

include them in IO_GenEvent file and that is ok.

 For this purpose, we wrote omit_header and omit_footer for IO_GenEvent.

21/01/2014 13

Debugging HepMC content: issues and suggestions
Database of debug events

 In collaboration with theorists and experimentalists, we constantly

find many particular cases of formally faulty HepMC events to which

we have to adapt our algorithms.

 This is a burden to our projects but we understand that in many

cases it cannot be avoided due to the physics content outside of

HepMC design.

 At present it is routine activity of ours to find and debug such events

(see previous slides).

 From this, we have created a set (>15) of debugging HepMC files

 We run every new release of our code against these files to check if these

events are still processed correctly after new patches.

 We rely on 1 - 10 events tweaking our test programs to recreate the bug.

 Right now, we keep these events for our internal use. Maybe this could

change?

21/01/2014 14

Debugging HepMC content: issues and suggestions
Database of debug events

 As many of these events have non-trivial structures, maybe a library
of such events could be useful as a part of HepMC content
debugging?

 such events would be associated with the HepMC project, not just specific
MC tool, making it available to others

 This would allow MC generators developers to benefit from the
experience of people who already encountered (and have noticed,
which in many cases is the main problem) such events.

 developers could test their software against such events and prepare a fix
in case they are not handled correctly

 this would prevent the bugs from occurring in later steps of development
or deployment of the project, which might be crucial to the project
maintenance

 Since this might improve communication between experiments, MC
tools and MC generators, experiments may be willing to agree to
make such samples of events public.

21/01/2014 15

Summary

 Our algorithms for fixing/debugging input:

 output precision hack

 tree structure validation

 filters for unsupported/unphysical particles and self-decays

 in/out vertex sum; vertex 4-momentum conservation check

 4-momentum event conservation checks (used also after processing by our tool)

 several algorithms to correct vertex 4-momentum non-conservation

 using PDG mass or generated_mass to correct particle 4-momentum

 database of peculiar events that we use (constantly) to verify our changes

 Our algorithms regarding HepMC content:

 unit fix (parts of the input event can have different unit than others! Momentum

non-conservation checks easily pick it up, but we still need to fix it to continue)

 creating history entries (currently: copying particles with status=3)

 redecaying particles (currently: storing new decays in separate HepMC events)

 store sub-trees for further analysis (to conserve disk space)

 IO_GenEvent::omit_header, IO_GenEvent::omit_footer

21/01/2014 16

Questions

 Are there any plans of introducing HepMC::IO_GenEvent compression?

 We often find .gz files to be 3x smaller than plaintext files generated by

HepMC::IO_GenEvent. However, using gzip in this way has no benefit because

we still need disk space for compression/decompression.

 A native .gz support for HepMC I/O could be beneficial.

 Do you have any feedback on how often HepMC::IO_GenEvent files are

used or do experiments / MC tools developers prefer other HepMC

output standards?

 Since HepMC is used as means of communication between MC

programs, are there any plans for introducing any content

validation?

 status code standard

 charge conservation

 flavour conservation

 Input from Les Houches Accords format compliance; check that all information

is passed

21/01/2014 17

Bonus slides: New functionality

useful for MC generators developers

21/01/2014 18

New functionality proposal
Vertex versioning

 We often compare events before/after processing by our tools – both

to verify the changes and to keep a history of modifications.

 ATLAS, for example, uses "history entries" (particles with status=3)

to save information about the original particles that are later

modified by Photos++.

 Such history entries are useful to compare events before/after

modification, but this solution works only if vertices remain

unchanged.

 My proposition: vertex (and particles?) versioning:

 By default, all vertices have "version 1". Creating a copy of a vertex can

introduce version change, i.e. two vertices of the same number exist in the event

but with different version number. User can access (or check existence of)

different versions of a vertex through proper accessors.

 When printing out, saving to file or iterating over particles either all or only one

selected version is used. Saving just one version introduces backward-

compatibility and negates any additional memory use when dumping events to

files.

21/01/2014 19

New functionality proposal
Vertex versioning

 This proposal solves the problem of history entries and allows to
have a history of changes of vertices as well (number of vertices in
each version can vary).

 Since many MC tools are used in chain, this solution allows to save
the result of processing by each tool as a new version. A history of
changes is immediately available and versions can be easily
compared with each other.

 While this can be done by copying GenEvent at each step, this is not
a memory-efficient or disk space-efficient solution. Versioning would
reduce the memory used by saving only vertices that have changed.

 For experiments that do not need it, this solution would not
introduce any disk space cost (if needed, information about version
does not have to be saved and versioning can be dropped when
saving final/selected version to a file)

 short int is enough to save version number. Again, when saving to
file, "version 1" vertices don’t have to include version number at all,
which is both backward-compatible and does not increase disk
space.

21/01/2014 20

