HepMC mini-Workshop
215t January 2014

LHCb HepMC usage and

requirements

&

HepMC as persistent generator event record
Use of HepMC in the LHCb simulation framework
EvtGen & HepMC

Related requirements + wishes

Gloria Corti, CERN

on behalf of the LHCb Simulation Core Developers

Pre-amble

e All LHCb event processing applications are based on LHCb
common software, in particular a common LHCb Event model

¢« What affects the event model may have consequences on any application
accessing the particular classes

¢« Event model classes that have been saved in (MC) samples used for
physics analysis must be readable in the future (i.e. Data Preservation)

Shared
between all

. applications
Event model / Physics event model

GenParts RawDat
@ A ,'I\,\

StrippedDST

*--..[. Reconstruction

2 Brunel
Al
Digitization
Boole

MCHits

Data produced is used/studied
directly or in further processing
(digitization, reconstruction,...)

MCParts

G. Corti

HepMC as event generator record

e Generator level events are stored in HepMC format within an LHCb
wrapper that provides general LHCb data object functionality

Access to Transient Event
Model and persistency (i.e.

ContainedObject

from memory and from files) __— T

Handling of vector of objects

One LHCb::HepMCEvent per
pileup (in time collisions)

KeyedObject< int >

T

LHCb::HepMCEvent

Link to one HepMC::GenEvent / std::string m_generatorName

from other LHCb event data
classes as a whole

e The persistency is taken care via Gaudi and ROOT dictionaries

HepMC::GenEvent* m_pGenEvt

¢ Issue when moved from HepMC 1.26.02 to HepMC 2.0.

e ROOT developed a Class Streamer making use of a HepMC 2.0 dictionary capable

to read HepMC 1 events

¢ Dictionary also essential for python-based analysis

HepMC LHCD specificities

e Particles have status code (HepMC::GenParticle::status()) which have
special meanings.
¢« 1 =stablein production generator (p from Primary Vertex, ...)
2 = decayed/fragmentated by production generator (quark, ...)
3 = (Pythia) documentation particle (string, ...)
777, 888 = decayed by EvtGen (all unstable particles)
889 = signal particle
999 = stable in EvtGen (p from B decays, ...)

e e e e e

e Units are LHCb units (MeV, mm, and ns).

¢ HepMC::GenEvent::signal process vertex() is the decay vertex of the
signal particle.

e General Information at the collision level kept in an LHCb class,
GenCollision

¢« Mandelstam and Bjorken-x variables, Process type and flag to indicate
collision w signal

¢« Some overlap with more recent HepMC::PDFInfo
¢« Would like to store a “universal” process ID common to “all” generators

G. Corti

LHCb MC Event Model

@) 4)

Generator Event Simulated
Classes Event Classes

[72]
e}
I LHCb::GenHeaderI g I MCHeader I\
@
{ S I MCVertex I-I_I
< L
I_I'I LHCb::GenCoIIisioln I - E)) // ‘
I \ < I MCParticle I
| LHCb:HepMCEvent | \
U) ¢)

 History of particles traveling trough detector in dedicated LHCDb event data
classes MCParticles and MCVertices and their relationship, a.k.a. MC
Truth

« MCParticles/MCVertices contain also the generator level information
(decay trees of all hadrons), and only a limited part of the hard process

information (heavy quarks, W&Z but not strings, ...).

G. Corti

HepMC in persistent files

¢ HepMC was kept in all MC DST
files with MC Truth to provide _

information for analysis of Total 1040
simulated events. But very HepMC 61 184
expensive in term of disk space MCParticles 46 101
vs the rest of the LHCb _

MCVertices 57 107

(packed!) event model

e Starting from productions made in 2013, HepMC is only kept in
generator level productions

¢« Heavy quark information needed for flavour tagged analysis and excited b
and c hadrons copied to MC Truth

¢ will likely be dropped for some of the central productions of this type too

e Users in some cases access directly via ROOT files with only generator
level information for their private studies

Simulation framework and HepMC

e HepMC used not only to save the events on output but also as
input to transfer the event to Geant4 for the detector simulation
¢« The processing of particle is done based on the status code in HepMC

(

Two INDEPENDENT
phases normally run in
sequence as in
production

Signal
Generation in I—o

/ Event/mm

c
S
£%
| ™
g3
@
@
O

Random number reset
Elle-nn numben
‘__- (veto emoty events)

Vertex §moanne

but generator phase can

Random number reset : .
and is run by itself

Generation ->
G4 Primary Vertex

Detector
Simulation

‘s Fill MCRarticle/MCVertex /MCHits

in /Event/MC/Particles...

G. Corti

Generator phase and HepMC

e In LHCb the generator phase in handled by different pieces of
code each with a well defined action

@ Min Bias

Inclusive
Signal ...

Sample
./ Generation
Tool ‘ .
Generate a given HepMC is used as exchange

sample of events
S format between these

separate objects, in
o Froguction particular the Production
”ﬁiﬁ"ﬂlv"": S (e.g. by Pythia) and the
5 Decay (by EvtGen)

properties

Generation
Algorithm

Pythia6
Pythia8
Herwig++

EvtGen

G. Corti

Generators and HepMC

¢ The functionality of Production and Decay tools is implemented using
external and LHCb custom generator libraries

» Generators are fixed for massive productions in a given version of the
LHCb simulation application, Gauss

= ALL generators have to use the same version of HepMC

Pythia6 (via HepMCfio HEPEVT wrapper library)
Pythia8 (via its hepmcinterface library)

EvtGen (see next slide)

Photos++ and Taula++ used through EvtGen
Herwig++ (via ThePeg converter)

Hijing (via HepMCfio HEPEVT wrapper library)

e e e e ¢ e

¢ We also use a ReadHepMCAsciFile production tool to try out other
generators before integrating them in our framework
¢ And a WriteHepMC to dump them

¢ And RIVET for tuning (integrated in Gauss)

G. Corti

HepMC use in EvitGen

from John Back, Warwick EvtGen group

e EvtGen uses its own EvtParticle class to represent a particle
¢« an “event” is just a list of these objects

¢ HepMC only used as an (optional) output format once EvtGen
has finished generating the decay

¢« Returns HepMC::GenEvent in the frame of the “mother” or primary/base
particle

¢« Each HepMC::GenVertex = a particle decay

¢ EvtParticle = HepMC::GenParticle(4-mtm, PDG id, status = stable/
decayed, position = lifetime)

¢« Nested vertices follow the complete particle decay tree

G. Corti

HepMC in LHCb detector simulation

¢ Geant4 does not have a tree structure to keep history

e Introduced use of HepMC internally to Geant4 to provide such a
tree structure

¢ Use LHCb-specialization of Geant4 classes (G4EventAction &
G4TrackAction)

¢ Use of G4Track ‘id’” as barcode id

¢ Introduce split of particles, i.e. additional vertices to attach secondary
particles produced ‘in flight’ like Bremstrahlung photons.

¢« Use the barcode of the production vertex to store the type of the
originating process, i.e. hadronic interaction, pair production, etc.

G. Corti

Summary and wishes

¢ HepMC is extensively used in LHCb.

¢ Using HepMC 2.06.05 in production for 2011 and 2012 analysis and 2.06.08
for development

e The HepMC version has to be kept synchronized between all
generators used by the LHCb simulation application, Gauss

¢ It may influence moving to a new version of a given generator, or dropping it
for a while in case of incompatibility.

» Modification of the HepMC record will affect mostly Gauss, but may
also affect analysis code

¢« Timing of change may be an issue

e MC samples written with old versions of HepMC have to be readable
with newer versions

¢« Compatibility to be provided centrally

e |f new functionality then it would be nice to have general event
information — some already there

G. Corti

