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Pre-amble

e All LHCb event processing applications are based on LHCb
common software, in particular a common LHCb Event model

¢« What affects the event model may have consequences on any application
accessing the particular classes

¢« Event model classes that have been saved in (MC) samples used for
physics analysis must be readable in the future (i.e. Data Preservation)
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HepMC as event generator record

e Generator level events are stored in HepMC format within an LHCb
wrapper that provides general LHCb data object functionality
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e The persistency is taken care via Gaudi and ROOT dictionaries

HepMC::GenEvent* m_pGenEvt

¢ Issue when moved from HepMC 1.26.02 to HepMC 2.0.

e ROOT developed a Class Streamer making use of a HepMC 2.0 dictionary capable

to read HepMC 1 events

¢ Dictionary also essential for python-based analysis




HepMC LHCD specificities

e Particles have status code (HepMC::GenParticle::status()) which have
special meanings.
¢« 1 =stablein production generator (p from Primary Vertex, ...)
2 = decayed/fragmentated by production generator (quark, ...)
3 = (Pythia) documentation particle (string, ...)
777, 888 = decayed by EvtGen (all unstable particles)
889 = signal particle
999 = stable in EvtGen (p from B decays, ...)

e e e e e

e Units are LHCb units (MeV, mm, and ns).

¢ HepMC::GenEvent::signal process vertex() is the decay vertex of the
signal particle.

e General Information at the collision level kept in an LHCb class,
GenCollision

¢« Mandelstam and Bjorken-x variables, Process type and flag to indicate
collision w signal

¢« Some overlap with more recent HepMC::PDFInfo
¢« Would like to store a “universal” process ID common to “all” generators
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LHCb MC Event Model
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 History of particles traveling trough detector in dedicated LHCDb event data
classes MCParticles and MCVertices and their relationship, a.k.a. MC
Truth

« MCParticles/MCVertices contain also the generator level information
(decay trees of all hadrons), and only a limited part of the hard process

information (heavy quarks, W&Z but not strings, ...).
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HepMC in persistent files

¢ HepMC was kept in all MC DST
files with MC Truth to provide _

information for analysis of Total 1040
simulated events. But very HepMC 61 184
expensive in term of disk space MCParticles 46 101
vs the rest of the LHCb _

MCVertices 57 107

(packed!) event model

e Starting from productions made in 2013, HepMC is only kept in
generator level productions

¢« Heavy quark information needed for flavour tagged analysis and excited b
and c hadrons copied to MC Truth

¢ will likely be dropped for some of the central productions of this type too

e Users in some cases access directly via ROOT files with only generator
level information for their private studies



Simulation framework and HepMC

e HepMC used not only to save the events on output but also as
input to transfer the event to Geant4 for the detector simulation
¢« The processing of particle is done based on the status code in HepMC
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Generator phase and HepMC

e In LHCb the generator phase in handled by different pieces of
code each with a well defined action
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Generators and HepMC

¢ The functionality of Production and Decay tools is implemented using
external and LHCb custom generator libraries

»  Generators are fixed for massive productions in a given version of the
LHCb simulation application, Gauss

= ALL generators have to use the same version of HepMC

Pythia6 (via HepMCfio HEPEVT wrapper library)
Pythia8 (via its hepmcinterface library)

EvtGen (see next slide)

Photos++ and Taula++ used through EvtGen
Herwig++ (via ThePeg converter)

Hijing (via HepMCfio HEPEVT wrapper library)

e e e e ¢ e

¢ We also use a ReadHepMCAsciFile production tool to try out other
generators before integrating them in our framework
¢ And a WriteHepMC to dump them

¢ And RIVET for tuning (integrated in Gauss)
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HepMC use in EvitGen

from John Back, Warwick EvtGen group

e EvtGen uses its own EvtParticle class to represent a particle
¢« an “event” is just a list of these objects

¢ HepMC only used as an (optional) output format once EvtGen
has finished generating the decay

¢« Returns HepMC::GenEvent in the frame of the “mother” or primary/base
particle

¢« Each HepMC::GenVertex = a particle decay

¢ EvtParticle = HepMC::GenParticle(4-mtm, PDG id, status = stable/
decayed, position = lifetime)

¢« Nested vertices follow the complete particle decay tree
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HepMC in LHCb detector simulation

¢ Geant4 does not have a tree structure to keep history

e Introduced use of HepMC internally to Geant4 to provide such a
tree structure

¢ Use LHCb-specialization of Geant4 classes (G4EventAction &
G4TrackAction)

¢ Use of G4Track ‘id’” as barcode id

¢ Introduce split of particles, i.e. additional vertices to attach secondary
particles produced ‘in flight’ like Bremstrahlung photons.

¢« Use the barcode of the production vertex to store the type of the
originating process, i.e. hadronic interaction, pair production, etc.
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Summary and wishes

¢ HepMC is extensively used in LHCb.

¢ Using HepMC 2.06.05 in production for 2011 and 2012 analysis and 2.06.08
for development

e The HepMC version has to be kept synchronized between all
generators used by the LHCb simulation application, Gauss

¢ It may influence moving to a new version of a given generator, or dropping it
for a while in case of incompatibility.

»  Modification of the HepMC record will affect mostly Gauss, but may
also affect analysis code

¢« Timing of change may be an issue

e MC samples written with old versions of HepMC have to be readable
with newer versions

¢« Compatibility to be provided centrally

e |f new functionality then it would be nice to have general event
information — some already there
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