HepMC 2 — 3 plans / proposals

Andy Buckley

University of Glasgow

HepMC development workshop, CERN, 21 Jan 2014

- . . /
remm THE ROYAL [l Universit ’_;\\\’///
W]% SOCIETY @[Glasgovz —MCnet

Introduction
By this point we’ve hopefully had a good discussion of the
organisational issues in HepMC development — organising an active
development/maintenence team is probably the biggest issue!

Issue #2: HepMC is horrible to use!
= broad agreement among (would-be) developers that a “v3” rewrite
is needed to address fundamental issues.

This will clearly need to maintain “99%” backward compatibility (cf.

LHAPDF 5 — 6) Likely tied in with a rethink of the persistency (and
1/0 speed improvements)

Issue #3: More standardisation would help
= Can we agree on a standard treatment of barcodes and status codes
in afterburner generators & detector simulation?

Issue #4: Minor functionality enhancements needed
= HI impact parameter, generation provenance info, ...

I'll visit these in reverse order, i.e. increasing in complexity!

This is largely a brain-dump (after a lot of thinking and code-prodding), so
let’s discuss “inline”

Minor improvements (version “2.7”)

No-brainers (?)

» Make iterator ranges work with Boost and C++11 for
o Works on trunk for C++11, needs wider testing

» Provide direct particle range access from particle — how often are
vertices really needed?
e But does the internal iterator design screw this up? Access only to
ranges, not begin/end?
» Remove unnecessary virtual declarations — they just slow the code
down

/19

No-brainers (2)

> Return e.g. momentum() by (const) reference for better efficiency
» Add new Heavylon IP variable to I/O ASCII format. Units? Not
mm/cm!!?
> Polarization and Flow should be nullable...minor API change,
but can it happen in 2.7?
o Can’t overload on return type, unfortunately

» ASCII1/O speedup, cf. Salam’s fast ASCII parser (avoid

istringstream)

e No format change for this one.
e Also note possibility of Lb_PRELOAD=uncompress.so

Some-brainers

» LHE weights: existing named weights are fine. .. right?

But WeightContainer API is horribly dysfunction: can’t even get a
list of keys!

Add keys (). Other missing features? Would be good to test
Suggestions about embedding LHE blobs in HepMC ASCII!!

» Mass treatment mess

Docs say GenParticle: :mass() returns generated_mass if set,
otherwise computed mass

But that’s not what’s implemented! Always returns computed mass:

often unphysical due to E? — p* computation

No flag to declare whether generated mass has been set. Default of 0
is physical (and one of the most useful values!)

Implement m* = (E — p)(E + p) in FourVector for improved
numerical stability

Could it be assumed/enforced that a set generated_mass must be
positive, and use default value of -1 as implicit flag?

General question re. on/off-shellness in MC records, and whether a
mass-based or “5-vector” momentum rep is needed

6/19

Some-brainers (2)

» Constness consistency/completeness issues, e.g.
const GenVertex* gv = get_vertex_somehow();
GenVertex: :particle const_iterator pi =
gv—>particles_begin (HepMC: : ancestors) ;
Last fn doesn’t exist: need to cast to non-const for const access!
Deep roots. ..

» Feature remouval:

o Can event-level alpha and scale values be dropped?
= Unused (almost?) always? Meaning unclear! Duplication with
PDFInfo
@ Same re. vertex weights
o Probably needs to be v3, but mentioning here because the impact is
probably minimal if the ASCII I/O can be updated

Event record standards (no code version)

8/19

Standards

v

Clarify what status 0 and 3 mean!

Standardise Les Houches 2013 vertex status/ID proposal? (And
add Genvertex: :status) alias?)

v

Status and barcode extensions:

o ATLAS has an ad hoc scheme. Not even well documented or
implemented in ATLAS. Other expts?

o |barcode| > 10k for afterburners? Or more?

o |barcode| > 200k or 1M for detsim?

o Afterburners should rewrite status 1 — 2? ATLAS uses a mod-1000
scheme for detsim mods

Standard non-interacting BSM particle = 99 or 19 or 1000022?
Ban directed cycles in the event graph?

v

v

v

9/19

Overhaul (version “3.0”)

10/19

The problem

THE CODE IS A COMPLETE MESS!
AND IS UNNECESSARILY PAINFUL TO USE

Not pointing any fingers!

Even when tidied up, as has been done, lots of the implementation is
unmaintainable (e.g. iterators, 1/O)
= not impossible, but beyond the time & pain threshold of those who could work on it

Some features clearly driven by HEPEVT compatibility. Moot point
now: new gens don’t use HEPEVT, and none use HepMC internally

Certain problems have their roots in fundamental design choices, e.g.
desire for STL emulation

= Some fixes unavoidably involve interface changes

Requirement of common event record is to pass enough info between
gen/sim steps, and be expressive for quick, clean analysis

Some of this is a personal view of “Rivet/ATLAS HepMC requirements”
11/19

Expressiveness

An example

Good:

for (const GenParticlex gp : gv->particles()) { ... // C++11
//
BOOST_FOREACH (const GenParticlex gp, gv->particles()) { // Boost

Bad:

for (vector<const GenParticlex>::const_iterator ip =

gv->particles () .begin();

ip != gv->particles().end(); ++ip) {
const GenParticlex gp = xip; // STL
//
for (size_t ip = 0; ip < gv->particles().size(); ++ip) {

const GenParticlex gp = gv->particles() [ip]; // C! Not so bad, actually...

Ugly:
for (HepMC::GenVertex::particle_iterator ip =
gv->particles_begin (HepMC: :relatives);

ip != gv->particles_end (HepMC::relatives); ++ip) {
const GenParticlex gp = *ip; // STL

// HepMC! No const iterator available! Presumably authors lost will to live

12/19

Compeatibility

There’s a huge codebase of “crappy HepMC cut 'n’ paste”. Typically
not actively maintained. ..

No point in putting a lot of work into a rewrite which can’t be used

Any rewrite will have to clean out the implementation but preserve
most of the API - or provide a compatibility wrapper

Use Genx class names for wrappers, HepMC: : Particle etc. for new implementation?

I hope that we can allow removal/changing of little-used features or minor
changes such as constness

A migration to v3 should be rapidly iterated with users: one HepMC
developer per expt/MC community would help greatly

3/19

API rethink

Design proposal
» Canonical list of event contents as single event-level vectors of
vertex & particle pointers

o Faster access for most common access pattern, and ROOT
auto-persistence compatibility (good idea?)

o Creation/deletion here. Consistency managed through graph. Any
value to using smart pointers? (Boost or C++11?)

o Use a smaller "technical vertex" object if there is no new
displacement, and compute the displacement recursively from
ancestors?

» Graph edge/vertex relations via vectors of pointers

o Returned by reference. The other major access pattern.

> Ancestors/descendents iteration is a harder problem

e Writing iterators to efficiently walk a graph in a predictable order
without duplication is not easy

e And no-one knows exactly how the current implementation works
(or if it is safe) due to the code mess!

o Could be done with an iterator containing a stack of vertex/particle
pointers + vector indices? (cf. a recursive call stack)

e Otherwise compute and return a vector of ptrs on demand:
inefficient! Recommend recursive (lambda) functions in this case

14/19

API rethink (2)

Design proposal

> In this picture we discard (most) explicit range objects:
@ vectors naturally support the range protocol
o Iterators can now just be standard STL iterators “for free”, without
needing to be defined within GenEvent/Particle/Vertex
@ Need a range proxy for ancestors/descendents if an iterator can be written: easy,
but a vector view would also be nice
> Suggestion to aim for compatibilty with graph libraries e.g.
BGL, NetworkX.
e Any real value? What graph analysis do we want? (Maybe we do...)
o Obsession with STL-(in)compatibility is a major current design flaw
(because the STL itself is quite nasty). Let’s not repeat that: don’t

compromise the natural/established use-case for hypothetical ones.

o Is this even possible while maintaining compatibility?

I/0

» 1/0 class interface hierarchy is a nightmare: discard and rethink
e Discard all I/O interfaces other than one for format compatibility
with 10_GenEvent files
e Should be possible (easy!) to make it a *lot* easier and simpler to use
(don’t need to emulate STL)
o Allow “plugins”?
» New ASCII format: generalisation to store more strings?
Escaping? YAML header / custom body cf. LHAPDF6?
o Extremely vague at present: need to consider carefully and iterate
proposal
e Format improvement already suggested for more compact ASCII
representation: see Les Houches 2011.

» ROOT and other binary formats

16/19

Misc

» Constness

o AGAIN! Small changes, needed for consistency. Part of general API
overhaul.

o Could fake the old inconsistent way with const_cast in wrapper,
but really?

> GenRun for e.g. cross-section

e Some important information like generation provenance, cross-secs
is not really event-level

o Persistency maybe needs to declare store some (particularly
cross-sec) in the event blocks, but API does not

» Units

o The current system’s implementation was never functional enough
to get significant uptake

o Quite a mess! Can it be done much simpler, i.e. just declare the
current units and provide rescaling functions for the user to call?

e Any possibility for an agreement on HepMC units? Or expt/theory
conventions unbridgeable?

Questions

» Are off-shell momentum vectors needed? Otherwise we could use
a safer mass-based vector (implementation in mcutils)

» For polarization does a spinor basis need to be provided as well as
a pair of angles? Feasible?

» Any other physics objects that you would really like to be able to
pass to experiments / other generators?

» Your own questions. ..

18/19

Summary

'S

HepMC'’s current codebase is a horror to work with:
inconsistencies, surprising /unclear ownership behaviours,
unnullable quantities, etc.

But there is a *lot* of established code which depends on it: any
rewrite needs to avoid widespread breakage since massive
migration work will probably not happen

Propose to first fix a few of the obvious flaws in version 2.x: is any
incompatible API change permitted?

More standardising of event encoding would also be welcome.

HepMC 3 rewrite has been much discussed: I think we are
approaching a big-picture design plan. Need a small, active
(5-10% of time — or more if you can do it!) group of developers.
Input/feedback from expts/MC authors, but lightweight, please

Timescale: we are probably now too late for a full HepMC 3
rollout by the end of the year. Unless work really starts in earnest
now, we probably need to make changes as non-disruptive as
possible, to allow upgrading in early LHC Run 2.

19/19

	Minor improvements (version ``2.7'')
	Event record standards (no code version)
	Overhaul (version ``3.0'')

