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Motivation

Many cases where one meets gauge theories far from equilibrium:

Cosmology: reheating and preheating decay products, parametric resonance, etc. . .

Phase transitions electro-weak etc.

Heavy-ion collisions initial condition as far from eq. as possible

Want to know:

How fast systems thermalize

What are properties of matter out of eq. anomalous viscosities, etc. . .

How phase transitions change out of equilibrium

What kinds of signatures out-of-eq. systems may leave

. . .



Motivation

For generic theories, only weak coupling methods available:

Mostly parametric estimates, not even LO results

Even at weak coupling often non-perturbative: strong fields, secular
divergences, instabilities. . .

Weak coupling provides scale separations

Case-by-case effective theories

Effective kinetic theory
Classical field theory
Hard loop effective theory/ Vlasov equations
. . .



Outline

Over-occupied, isotropic case

Under-occupied, isotropic case

Anisotropic systems

For another time:

Inhomogenous systems

Expanding systems

Fermions

Applications



Over-occupied cascade
Simple example: what happens if you have too many soft gluons, f ∼ 1/α
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f ~ 1

Initial condition

(eβp-1)-1

The system thermalises when pmax ∼ T ∼ ε1/4
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Over-occupied cascade

Energy conservation

ε ∼
∫

d3ppf ∼ p ∼ p4
maxf ⇒ f ∝ p−4

max

Expect scattering rate Γ to be order Γt ∼ 1.

If Γt < 1, system has not yet relaxed to scaling solution

If Γt > 1, scattering fast enough to change system, reducing scattering rate

Estimate Γ ∼ 〈σn(1 + f )〉 ∼ σp3
maxf

2 solved by

pmax ∝ t1/7

f ∝ t−4/7

Expect that below pmax, modes have had time to arrange themselves to
thermal form f (p) ∼ T∗/p
AK,Moore arXiv: 1107.5050; Blaizot, Gelis, Liao, McLerran, Venugopalan 1107.5296



Going quantitative

Strong fields (f � 1): Classical (lat.) field theory

But not too (f � 1/α): Effective kinetic theory

ln(p)

ln(f)

f ~ 1

f ~ 1/α Too high f for kinetic

Too weak fields for 

classical field theory

Can the whole system be described with either?

Depends on what modes are important.

Perhaps need more than one eff. theory is the case in anisotropic systems



Classical field theory

Non-equilibrium expectation value:

〈O(t)〉 = Tr ρ̂(t0)Ô(t) = Tr ρ̂Û(t0 − t)ÔÛ(t − t0)

ρ̂ some non-eq. density matrix at t0. Express in field configuration basis:∫
D[φ(x)]

∫
D[φ0(x)]Tr |φ0〉ρ(φ0)〈φ0| Û(t0 − t) |φ〉O(φ)〈φ| Û(t − t0)

Write the two matrix elements as two path integrals (”Schwinger-Keldysh field doubling”):

〈φ0|Û(t0 − t)|φ〉
[
〈φ0|Û(t0 − t)|φ〉

]∗
=∫ φ+(t)=φ

φ+(t0)=φ0

D[φ+]

∫ φ

φ0

D[φ−]e i(S[φ+]−S[φ−])



Classical field theory

For classical approximation, write

χ =
1

2
(φ− + φ+) π = (φ− − φ+)

In a system with φ+, φ− large, χ large and π small:

S [φ+]− S [φ−] ≈ πδS [χ]

δχ

Now path integral linear in π. Integral over π just gives a constraint:∏
x,τ

2πδ

[
δS [χ]

δχ

]
field χ obeys classical equations of motions at all points.

⇒ Sample initial conditions as per density matrix, evolve classically



Occupancies on a lattice

Assume free particle dispersion to define an occupancy:

G>
AA(p) =

∫
d3x e ip·x〈Ai (x)Aj(0)〉 =

free

P ij(p)

|p|
f (p)

f (p) ≡
δij
2
|p|
∫

d3xe ip·x〈Ai (x)Aj(0)〉coulomb

As long as modifications to disp. rel small Dµ ∼ pµ + g〈A2〉1/2,
p2 � g2〈A2〉, f (p) corresponds to a occupation number of gluons

Screening scale: m2
screen ∼ g2〈A2〉 ∼ g2

∫
d3p f (p)

p

Below mscreen physics of massive plasmons, landau damping, etc..

m2
screen ∝ g2p2

maxf ∝ t−2/7, particle description good for wider ranges
of p at late times



Classical YM on a lattice
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Classical YM on a lattice
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Scaling reached very quickly AK, Moore 1207.1663

6 very different initial conditions:

Differences vanish by Qt ∼ 64



A mystery?
What is the form of the scaling solution?

All the scales below pmax have had time to undergo large angle
scattering and therefore have had time to reach thermal form
f (p) ∝ p−1

AK, Moore 1107.5050

Suggested solution by weak wave turbulence? Berges, Scheffler and Sexty 0811.4293

Seems unfeasible to resolve by looking at ∼ 1 decade of data
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Kinetic theory
The forward Wightman fnct. obeys an equation of motion
(G>(x , y) = G+−(x , y) = 〈φ+(x)φ−(y)〉)

(∂2
x − ∂2

y )G>(x , y) =
∑
i

∫
z

(G+i (x , z)Σi−(z , y)− Σ+i (x , z)Gi−(z , y))

Change coord to average and difference x , y → X + r/2,X − r/2 and
Fourier transform WRT to relative coord r

(∂2
x − ∂2

y ) = 2∂X∂r = 2ipµ∂Xµ

Assuming a free particle form of the Wightman fnct. gives function of f .
Expanding self energies gives collision terms C[f]:

2pµ∂µf (p) = −C [f ](p)

Reliable if p > mscreen and C [f ] has expansion: (g2Nc f )



Closer look into kinetic theory Arnold, Moore, Yaffe hep-ph/0209353

C2↔2[f ] =

∫
k,p′,k ′

|M|2
[
fpfk(1 + fp′)(1 + fk ′)− fp′fk ′(1 + fp)(1 + fk))

]
Naively |M|2 ∼ 9 + (t−u)2

s2 + (s−u)2

t2 + (s−t)2

u2

However, t and u channels suffer from a Coulombic divergence:∫
|M|2 ∝

∫
d2q⊥

1

(q2
⊥)2
−→

∫
d2q⊥

1

(q2
⊥ + m2

screen)2

At the screening scale m2
screen ∼ g2

∫
d3p f (p)

p medium effects
important for the exchange gluon: regulate the matrix element



Soft scattering, hard loops

Q ~ m

P ~ p
max

P+Q

Propagation of the exchange gluon (q ∼ mscreen) is modified
dominantly by hard modes p ∼ pmax:

m2
screen = g2

∫
d3p

f (p)

p

Kinematic simplification:

Πij
T (q, ω) = −g2

∫
d3p

(2π)3

f (p)

p

[
2 +

(q2 − ω2)(1− (vp · vq)2)

(vp · q− ω)2

]
Mrówczyński, Thoma hep-ph/0001164

Resummed propagators for soft gluons: Hard Loop theory
Equivalent to Vlasov equations: soft modes classical fields, hard modes
classical particles. Blaizot, Iancu hep-ph/0101103



Inelastic scattering

IR divergence in the elastic scattering makes soft scattering rate large

Γsoft ∼ σn(1 + f ) ∼ pmaxf
2 p2

max

m2
screen

, Γhard ∼ pmaxf
2

Each time a particle undergoes a soft scattering, has g2 chance to split

Γsplit ∼ g2Γsoft(1 + f ) ∼ Γhard

As important as elastic scattering



Apples to apples comparison:
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Large-volume: (Qa)=0.2, (QL)=51.2, Cont. extr.: down to (Qa)=0.1, (QL)=25.6 Both at Qt=2000, m̃ = 0.08
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Coming back to the mystery:

Kinetic theory simulations ∼ 1000 times faster

What is the power law form of the scaling solution?
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Solution to the mystery: No p−4/3 scaling, rather large regions of special
physics at mscreen and pmax
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End of the cascade with Egang Lu, 1403.xxxx

Kinetic theory can address the relaxation from the scaling form to
equilibrium

T∗ apparent temperature of the IR tail

At teq ∼ T/g4
of course!, T∗ ∼ pmax ∼ T



Overoccupied cascade: summary
The thermalization under control at all time scales

Fast relaxation to scaling form (classical)
Parametrically long time in scaling form (classical and kinetic)
Relaxation to equilibrium form (kinetic)

(semi-)classical physics due to scale separations

ln(p)

ln(f)

Thermal

f ~ 1

Initial condition

(eβp-1)-1

Self-similar cascade

p
max      

~ t1/7

f(p
max

)~ t-4/7



Small initial occupancy

Just the same thing backwards?? NO!

ln(p)

ln(f)

Thermal

f ~ 1

Initial

Formation of soft

thermal cloud

Q

Soft inelastic scattering fast: build soft particle distribution



Radiation cascade

Hard particles move in soft thermal bath, radiate

Hard splitting slow

Once the hard particles have had time to split democratically, they cascade
quickly to IR

Q

t     (Q)
split

t     (Q/2)
split

t     (Q/4)

. . .

. . .

. . .

. . .

TQ/4Q/2

split

tsplit governed by physics of Landau-Pomeranchuck-Migdal suppression



Landau-Pomeranchuck-Migdal suppression

Cloud reforms

formt

Particle moves

with a gluon cloud

Scatters

Scattering kicks a gluon from the virtual cloud

Cloud reforms when the wave-packets separate

tform ∼
trans. size

trans. vel.
∼ 1/p⊥

p⊥/p
∼ p

p2
⊥



Landau-Pomeranchuck-Migdal suppression

Scatters

Scatteres before

cloud re−forms

formt

Particle moves

with a gluon cloud

Frequent or soft scattering: cloud hasn’t re-formed Coulomb div.!

At most one emission per tform ⇒Reduced rate:

p2
⊥ ≡ q̂tform ⇒ Γemit(p) ∼ g2t−1

form ∼ g2

√
q̂

p

QED: Landau, Pomeranchuk, Migdal 1953. QCD: Baier Dokshitzer Mueller Peigne Schiff hep-ph/9607355



Effective C1↔2 matrix element revisited Arnold, Moore, Yaffe hep-ph/0209353

C1↔2 ∼
∫

dp γpk,p−k [fp(1 + fk)(1 + fp−k)− fk fp−k(1 + fp)]

γp
′

p,k ∼
p′4 + p4 + k4

p′3p3k3︸ ︷︷ ︸
DGLAP split-kernel

∫
d2h

(2π)2
h · ReF(h; p′, p, k)

2h = iδE (h)F(h) +
g2Nc

2

∫
d2q

(2π)2

[
T∗

(
1

q2
− 1

q2 + m2
screen

)]
(1)

× (3F(h)− F(h− pq)− F(h− kq)− F(h + pq))

Where sensitivity to the medium comes from

δE is the difference of energies of one gluon with momentum p′

compared the two with k, p′: depends on effective masses

Apparent termperature T∗ ∼
∫
p f (1 + f )/(

∫
p f /p) ∼ q̂/m2

screen



Bottom-up thermalization Baier, Mueller, Schiff, Son hep-ph/0009237, AK, Moore 1107.5050

Hard particles collide with each other and emit LPM suppressed
radiation ndaughter(p) ∼ nhardΓemit(p)t ∝ p−1/2 ⇒ f ∝ tp−7/2

Soft particles become numerous enough to start dominating screening
and scattering. Thermalize among themselves

Radiation from the hard particles heats up the soft thermal bat

T 4 ∼ εsoft ∼ nhardksplit with Γemit(ksplit)t ∼ 1

System thermalizes when all the hard particles have had time to
undergo hard splitting

ksplit ∼ Q ∼ g4q̂T t
2
therm, q̂T ∼ g4T 3, T 4 ∼ nhardQ

So that ttherm ∼ 1/(g4T )
√

Q/T



with Egang Lu, 1403.xxxx
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Bottom-up thermalization Baier, Mueller, Schiff, Son hep-ph/0009237, AK, Moore 1107.5050

Hard particles collide with each other and emit LPM suppressed
radiation ndaughter(p) ∼ nhardΓemit(p)t ∝ p−1/2 ⇒ f ∝ tp−7/2

Soft particles become numerous enough to start dominating screening
and scattering. Thermalize among themselves

Radiation from the hard particles heats up the soft thermal bat

T 4 ∼ εsoft ∼ nhardksplit with Γemit(ksplit)t ∼ 1

Thermalization when all the hard particles have had time to undergo
hard splitting

ksplit ∼ Q ∼ g4q̂T t
2
therm, q̂T ∼ g4T 3, T 4 ∼ nhardQ

so that ttherm ∼ 1/(g4T )
√

Q/T
Naively q̂T t ∼ Q2 → tnaive ∼ 1/(g4T )(Q/T )2



with Egang Lu, 1403.xxxx

0.01 0.1 1 10 100
p/T

final

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

100

f
T

final
=1, λ=0.1, α

-c
=f(Q)=2x10

-8
, Q=189.81

f~p
-7/2



Anisotropic systems, anisotropic screening: Mrowczynski

Isotropic distributions:

Screening stabilizes soft E-fields

ω2
pl ∼ m2

screen ∼ g2

∫
d3p

f (p)

p

t

z
p

m

Screened 

p

fields

B-fields induces a rotation on
f (p) → No screening for static
B-fields

Anisotropic distributions:

B-field induces non-trivial
rotation:

Some B-fields stabilized
...others destabilized:
Plasma-unstable modes

t

m

p

B−fields

z
p

Unstable

Unstable modes grow
exponentially. . .



Saturation of the instabilities.

Instabilities and their saturation can be simulated using
Hard loop/lattice Vlasov simulations
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Anisotropic systems

Are plasma instabilities important?
(elastic scattering, inelastic scattering, other instabilities,...)

Depends on the system:

The more anisotropic the system is, the stronger instabilities
Depends also on occupancies
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Anisotropic systems

Are plasma instabilities important?
(elastic scattering, inelastic scattering, other instabilities,...)

Depends on the system:

The more anisotropic the system is, the stronger instabilities
Depends also on occupancies

Nielsen−

Olesen

Instabilities
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Broadening:  non−HTL,
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Summary
At weak coupling many non-eq. systems can be mapped to classical
eff. theories and studied numerically

Classical field theory
kinetic theory
Vlasov equations
. . . similarly at strong coupling: classical gravity

The physics is very different from scalar theories
Complicated screening
Small angle scattering
LPM
Instabilities

Applications:
Heavy-ion collisions AK, Moore 1108.4684

Reheating Harigaya, Mukaida 1312.3097

. . .


