Thermalization of nonabelian plasmas at weak coupling

Aleksi Kurkela, CERN

rxiv: {	1107.5050	Thermalization in generic setup, complete treatment of plasma instabilities
	1108.4684	Specialized to heavy ion collisions
	1207.1663	Quantitative treatment of over-occupied isotropic systems using lattice simulations
Ī	1209.4091	Algorithmic development for expanding systems
l	1401.3751	Kinetic theory description of the over-occupied system

Work in collaboration with Guy Moore, Egang Lu, and Mark Abraao York (McGill)

Motivation

Many cases where one meets gauge theories far from equilibrium:

- Cosmology: reheating and preheating decay products, parametric resonance, etc...
- Phase transitions electro-weak etc.
- Heavy-ion collisions initial condition as far from eq. as possible

Want to know:

- How fast systems thermalize
- What are properties of matter out of eq. anomalous viscosities, etc...
- How phase transitions change out of equilibrium
- What kinds of signatures out-of-eq. systems may leave
- . . .

Motivation

For generic theories, only weak coupling methods available:

- Mostly parametric estimates, not even LO results
- Even at weak coupling often non-perturbative: strong fields, secular divergences, instabilities. . .
- Weak coupling provides scale separations
- Case-by-case effective theories
 - Effective kinetic theory
 - Classical field theory
 - Hard loop effective theory/ Vlasov equations
 - ...

Outline

- Over-occupied, isotropic case
- Under-occupied, isotropic case
- Anisotropic systems

For another time:

- Inhomogenous systems
- Expanding systems
- Fermions
- Applications

Over-occupied cascade

Simple example: what happens if you have too many soft gluons, $f \sim 1/\alpha$

Over-occupied cascade

Simple example: what happens if you have too many soft gluons, $f \sim 1/\alpha$

The system thermalises when $p_{
m max} \sim T \sim \epsilon^{1/4}$

Over-occupied cascade

Energy conservation

$$\epsilon \sim \int d^3ppf \sim p \sim p_{\max}^4 f \Rightarrow f \propto p_{\max}^{-4}$$

Expect scattering rate Γ to be order $\Gamma t \sim 1$.

- If $\Gamma t < 1$, system has not yet relaxed to scaling solution
- ullet If $\Gamma t>1$, scattering fast enough to change system, reducing scattering rate

Estimate $\Gamma \sim \langle \sigma n(1+f) \rangle \sim \sigma p_{\rm max}^3 f^2$ solved by

$$p_{
m max} \propto t^{1/7}$$
 $f \propto t^{-4/7}$

Expect that below $p_{\rm max}$, modes have had time to arrange themselves to thermal form $f(p) \sim T_*/p$

Going quantitative

- Strong fields $(f \gg 1)$: Classical (lat.) field theory
- But not too ($f \ll 1/\alpha$): Effective kinetic theory

Can the whole system be described with either?

- Depends on what modes are important.
- Perhaps need more than one eff. theory is the case in anisotropic systems

Classical field theory

Non-equilibrium expectation value:

$$\langle O(t) \rangle = \operatorname{Tr} \hat{
ho}(t_0) \hat{O}(t) = \operatorname{Tr} \hat{
ho} \hat{U}(t_0 - t) \hat{O} \hat{U}(t - t_0)$$

 $\hat{\rho}$ some non-eq. density matrix at t_0 . Express in field configuration basis:

$$\int \mathcal{D}[\phi(\mathbf{x})] \int \mathcal{D}[\phi_0(\mathbf{x})] \mathrm{Tr} \ |\phi_0\rangle \rho(\phi_0) \langle \phi_0| \ \hat{U}(t_0 - t) \ |\phi\rangle \mathcal{O}(\phi) \langle \phi| \ \hat{U}(t - t_0)$$

Write the two matrix elements as two path integrals ("Schwinger-Keldysh field doubling"):

$$egin{aligned} \langle \phi_0 | \hat{U}(t_0-t) | \phi
angle \left[\langle \phi_0 | \hat{U}(t_0-t) | \phi
angle
ight]^* = \ \int_{\phi_+(t_0)=\phi_0}^{\phi_+(t)=\phi} \mathcal{D}[\phi_+] \int_{\phi_0}^{\phi} \mathcal{D}[\phi_-] e^{i(S[\phi_+]-S[\phi_-])} \end{aligned}$$

Classical field theory

For classical approximation, write

$$\chi = \frac{1}{2}(\phi_- + \phi_+) \quad \pi = (\phi_- - \phi_+)$$

In a system with ϕ_+ , ϕ_- large, χ large and π small:

$$S[\phi_+] - S[\phi_-] \approx \pi \frac{\delta S[\chi]}{\delta \chi}$$

Now path integral linear in π . Integral over π just gives a constraint:

$$\prod_{\mathbf{x},\tau} 2\pi\delta \left[\frac{\delta S[\chi]}{\delta \chi} \right]$$

field χ obeys classical equations of motions at all points.

 \Rightarrow Sample initial conditions as per density matrix, evolve classically

Occupancies on a lattice

Assume free particle dispersion to define an occupancy:

$$G_{AA}^{>}(\mathbf{p}) = \int d^3x \, e^{i\mathbf{p}\cdot\mathbf{x}} \langle A^i(\mathbf{x})A^j(0) \rangle \stackrel{=}{\underset{free}{=}} \frac{\mathcal{P}^{ij}(\mathbf{p})}{|\mathbf{p}|} f(p)$$
$$f(p) \equiv \frac{\delta_{ij}}{2} |\mathbf{p}| \int d^3x e^{i\mathbf{p}\cdot\mathbf{x}} \langle A^i(x)A^j(0) \rangle_{\text{coulomb}}$$

- As long as modifications to disp. rel small $D_{\mu} \sim p_{\mu} + g \langle A^2 \rangle^{1/2}$, $p^2 \gg g^2 \langle A^2 \rangle$, f(p) corresponds to a occupation number of gluons
- Screening scale: $m_{\text{screen}}^2 \sim g^2 \langle A^2 \rangle \sim g^2 \int d^3 p \frac{f(p)}{p}$
 - ullet Below $m_{
 m screen}$ physics of massive plasmons, landau damping, etc..
 - $m_{\rm screen}^2 \propto g^2 p_{\rm max}^2 f \propto t^{-2/7}$, particle description good for wider ranges of p at late times

Classical YM on a lattice

- Define scale $Q^4 = g^2 \epsilon$
- In classical FT, the cascade continues forever Non-thermal fixed point

Classical YM on a lattice

- Define scale $Q^4 = g^2 \epsilon$
- In classical FT, the cascade continues forever Non-thermal fixed point

6 very different initial conditions:

Differences vanish by $Qt \sim 64$

A mystery?

What is the form of the scaling solution?

• All the scales below $p_{\rm max}$ have had time to undergo large angle scattering and therefore have had time to reach thermal form $f(p) \propto p^{-1}$

Suggested solution by weak wave turbulence? Berges, Scheffler and Sexty 0811.4293

A mystery?

What is the form of the scaling solution?

• All the scales below $p_{\rm max}$ have had time to undergo large angle scattering and therefore have had time to reach thermal form $f(p) \propto p^{-1}$

- Suggested solution by weak wave turbulence? Berges, Scheffler and Sexty 0811.4293
- ullet Seems unfeasible to resolve by looking at ~ 1 decade of data

Kinetic theory

The forward Wightman fnct. obeys an equation of motion $(G^{>}(x,y)=G_{+-}(x,y)=\langle \phi_{+}(x)\phi_{-}(y)\rangle)$

$$(\partial_{x}^{2} - \partial_{y}^{2})G^{>}(x, y) = \sum_{i} \int_{z} (G_{+i}(x, z)\Sigma_{i-}(z, y) - \Sigma_{+i}(x, z)G_{i-}(z, y))$$

Change coord to average and difference $x, y \to X + r/2, X - r/2$ and Fourier transform WRT to relative coord r

$$(\partial_x^2 - \partial_y^2) = 2\partial_X \partial_r = 2ip^\mu \partial_\mu^X$$

Assuming a free particle form of the Wightman fnct. gives function of f. Expanding self energies gives collision terms C[f]:

$$2p^{\mu}\partial_{\mu}f(p) = -C[f](p)$$

• Reliable if $p > m_{\text{screen}}$ and C[f] has expansion: $(g^2 N_c f)$

$$\frac{df}{dt} = -C_{2\leftrightarrow 2}[f] - C_{1\leftrightarrow 2}[f]$$

$$C_{2\leftrightarrow 2}[f] = \int_{k,p',k'} |M|^2 \left[f_p f_k (1+f_{p'})(1+f_{k'}) - f_{p'} f_{k'} (1+f_p)(1+f_k) \right]$$

- Naively $|M|^2 \sim 9 + \frac{(t-u)^2}{s^2} + \frac{(s-u)^2}{t^2} + \frac{(s-t)^2}{u^2}$
- However, t and u channels suffer from a Coulombic divergence:

$$\int |M|^2 \propto \int d^2 q_\perp rac{1}{(q_\perp^2)^2} \longrightarrow \int d^2 q_\perp rac{1}{(q_\perp^2 + m_{
m screen}^2)^2}$$

• At the screening scale $m_{\rm screen}^2 \sim g^2 \int d^3 p \frac{f(p)}{p}$ medium effects important for the exchange gluon: regulate the matrix element

Soft scattering, hard loops

• Propagation of the exchange gluon $(q \sim m_{\rm screen})$ is modified dominantly by hard modes $p \sim p_{\rm max}$:

$$m_{\text{screen}}^2 = g^2 \int d^3 p \frac{f(p)}{p}$$

Kinematic simplification:

$$\Pi_T^{ij}(\mathbf{q},\omega) = -g^2 \int \frac{d^3\mathbf{p}}{(2\pi)^3} \frac{f(\mathbf{p})}{p} \left[2 + \frac{(q^2 - \omega^2)(1 - (\mathbf{v_p} \cdot \mathbf{v_q})^2)}{(\mathbf{v_p} \cdot \mathbf{q} - \omega)^2} \right]$$

Mrówczyński, Thoma hep-ph/0001164

- Resummed propagators for soft gluons: Hard Loop theory
 - Equivalent to Vlasov equations: soft modes classical fields, hard modes classical particles. Blaizot, lancu hep-ph/0101103

Inelastic scattering

IR divergence in the elastic scattering makes soft scattering rate large

$$\Gamma_{
m soft} \sim \sigma n (1+f) \sim p_{
m max} f^2 rac{p_{
m max}^2}{m_{
m screen}^2}, \qquad \Gamma_{
m hard} \sim p_{
m max} f^2$$

Each time a particle undergoes a soft scattering, has g^2 chance to split

Apples to apples comparison:

Abraao York, AK, Lu, Moore 1401.3751.

Apples to apples comparison:

Explicit demonstration of field-particle duality!
Abraao York, AK, Lu, Moore 1401.3751

Coming back to the mystery:

Kinetic theory simulations $\sim 1000 \ times$ faster

What is the power law form of the scaling solution?

Solution to the mystery: No $p^{-4/3}$ scaling, rather large regions of special physics at $m_{\rm screen}$ and $p_{\rm max}$

Coming back to the mystery:

Kinetic theory simulations ~ 1000 times faster

What is the power law form of the scaling solution?

Solution to the mystery: No $p^{-4/3}$ scaling, rather large regions of special physics at $m_{\rm screen}$ and $p_{\rm max}$

Kinetic theory can address the relaxation from the scaling form to equilibrium

- ullet T_* apparent temperature of the IR tail
- ullet At $t_{
 m eq}\sim T/g^4$ of course!, $T_*\sim p_{
 m max}\sim T$

Overoccupied cascade: summary

- The thermalization under control at all time scales
 - Fast relaxation to scaling form (classical)
 - Parametrically long time in scaling form (classical and kinetic)
 - Relaxation to equilibrium form (kinetic)
- (semi-)classical physics due to scale separations

Small initial occupancy

Just the same thing backwards?? NO!

Soft inelastic scattering fast: build soft particle distribution

Radiation cascade

Hard particles move in soft thermal bath, radiate

Hard splitting slow

Once the hard particles have had time to split democratically, they cascade quickly to $\ensuremath{\mathsf{IR}}$

 $t_{
m split}$ governed by physics of Landau-Pomeranchuck-Migdal suppression

Landau-Pomeranchuck-Migdal suppression

- Scattering kicks a gluon from the virtual cloud
- Cloud reforms when the wave-packets separate

$$t_{
m form} \sim {
m trans. \ size} \over {
m trans. \ vel.} \sim {1/
ho_\perp \over
ho_\perp/
ho} \sim {
ho \over
ho^2}$$

Landau-Pomeranchuck-Migdal suppression

- Frequent or soft scattering: cloud hasn't re-formed Coulomb div.!
- At most one emission per $t_{\text{form}} \Rightarrow \text{Reduced rate}$:

$$ho_{\perp}^2 \equiv \hat{q} t_{
m form} \Rightarrow \Gamma_{
m emit}(p) \sim g^2 t_{
m form}^{-1} \sim g^2 \sqrt{rac{\hat{q}}{p}}$$

$$C_{1\leftrightarrow 2} \sim \int dp \; \gamma_{k,p-k}^{p} \left[f_p(1+f_k)(1+f_{p-k}) - f_k f_{p-k}(1+f_p) \right] \ \gamma_{p,k}^{p'} \sim \underbrace{\frac{{p'}^4+p^4+k^4}}_{ ext{DGLAP split-kernel}} \int rac{d^2h}{(2\pi)^2} \mathbf{h} \cdot ext{Re} \mathbf{F}(\mathbf{h}; p', p, k)$$

$$2\mathbf{h} = i\delta \mathbf{E}(\mathbf{h})\mathbf{F}(\mathbf{h}) + \frac{g^2 N_c}{2} \int \frac{d^2\mathbf{q}}{(2\pi)^2} \left[T_* \left(\frac{1}{\mathbf{q}^2} - \frac{1}{\mathbf{q}^2 + m_{\text{screen}}^2} \right) \right]$$
(1)

$$\times (3\mathbf{F}(\mathbf{h}) - \mathbf{F}(\mathbf{h} - p\mathbf{q}) - \mathbf{F}(\mathbf{h} - k\mathbf{q}) - \mathbf{F}(\mathbf{h} + p\mathbf{q}))$$

Where sensitivity to the medium comes from

- δE is the difference of energies of one gluon with momentum p' compared the two with k, p': depends on effective masses
- Apparent termperature $T_* \sim \int_{\mathbf{p}} f(1+f)/(\int_{\mathbf{p}} f/p) \sim \hat{q}/m_{\mathrm{screen}}^2$

• Hard particles collide with each other and emit LPM suppressed radiation $n_{\rm daughter}(p) \sim n_{\rm hard} \Gamma_{\rm emit}(p) t \propto p^{-1/2} \Rightarrow f \propto t p^{-7/2}$

•

•

- Hard particles collide with each other and emit LPM suppressed radiation $n_{\rm daughter}(p) \sim n_{\rm hard} \Gamma_{\rm emit}(p) t \propto p^{-1/2} \Rightarrow f \propto t p^{-7/2}$
- Soft particles become numerous enough to start dominating screening and scattering. Thermalize among themselves
- Radiation from the hard particles heats up the soft thermal bath

$$T^4 \sim \epsilon_{
m soft} \sim n_{
m hard} k_{
m split} \quad {
m with} \quad \Gamma_{
m emit}(k_{
m split}) t \sim 1$$

•

- Hard particles collide with each other and emit LPM suppressed radiation $n_{\rm daughter}(p) \sim n_{\rm hard} \Gamma_{\rm emit}(p) t \propto p^{-1/2} \Rightarrow f \propto t p^{-7/2}$
- Soft particles become numerous enough to start dominating screening and scattering. Thermalize among themselves
- Radiation from the hard particles heats up the soft thermal bat

$$T^4 \sim \epsilon_{
m soft} \sim n_{
m hard} k_{
m split} \quad {
m with} \quad \Gamma_{
m emit}(k_{
m split}) t \sim 1$$

 Thermalization when all the hard particles have had time to undergo hard splitting

$$k_{
m split} \sim Q \sim g^4 \hat{q}_T t_{
m therm}^2, \qquad \hat{q}_T \sim g^4 T^3, \qquad T^4 \sim n_{
m hard} Q$$
 so that $t_{
m therm} \sim 1/(g^4 T) \, \sqrt{Q/T}$ Naively $\hat{q}_T t \sim Q^2
ightarrow t_{
m naive} \sim 1/(g^4 T) (Q/T)^2$

Isotropic distributions:

Screening stabilizes soft E-fields

$$\omega_{pl}^2 \sim m_{\mathrm{screen}}^2 \sim g^2 \int d^3 p \frac{f(p)}{p}$$

• B-fields induces a rotation on f(p) o No screening for static B-fields

Anisotropic distributions:

- B-field induces non-trivial rotation:
 - Some B-fields stabilized
 - ...others destabilized:
 Plasma-unstable modes

 Unstable modes grow exponentially...

Saturation of the instabilities.

Instabilities and their saturation can be simulated using Hard loop/lattice Vlasov simulations

Bödeker and Rummukainen (0705.0180) and many others. . .

Anisotropic systems

• Are plasma instabilities important?

(elastic scattering, inelastic scattering, other instabilities,...)

Anisotropic systems

Are plasma instabilities important?

```
(elastic scattering, inelastic scattering, other instabilities,...)
```

- Depends on the system:
 - The more anisotropic the system is, the stronger instabilities
 - Depends also on occupancies

Anisotropic systems

Are plasma instabilities important?

```
(elastic scattering, inelastic scattering, other instabilities,...)
```

- Depends on the system:
 - The more anisotropic the system is, the stronger instabilities
 - Depends also on occupancies

 $(\alpha_s \ll 1, AK, Moore 1107.5050)$

Summary

- At weak coupling many non-eq. systems can be mapped to classical eff. theories and studied numerically
 - Classical field theory
 - kinetic theory
 - Vlasov equations
 - ...similarly at strong coupling: classical gravity

- The physics is very different from scalar theories
 - Complicated screening
 - Small angle scattering
 - LPM
 - Instabilities

- Applications:
 - Heavy-ion collisions AK, Moore 1108.4684
 - Reheating Harigaya, Mukaida 1312.3097
 - •