Working at 5 ns bunch spacing?

Very first ideas to stimulate discussion...

B.Gorini, F.Lanni, L.Pontecorvo

Beam conditions

Parameter	LHC	HL-LHC		HE-LHC	VHE-LHC
c.m. energy [TeV]	14			33	100
circumference C [km]	26.7				80
dipole field [T]	8.33			20	20
dipole coil aperture [mm]	56			40	≤ 40
beam half aperture [cm]	2.2 (x), 1.8 (y)			1.3	< 1.3
injection energy [TeV]	0.45			>1.0	>3.0
no. of bunches	2808	2808	1404	2808	8420
bunch population [10 ¹¹]	1.125	2.2	3.5	0.81	0.80
init. transv. norm. emit. $[\mu m]$	3.73,	2.5	3.0	1.07	1.70
initial longitudinal emit. [eVs]	2.5			3.48	13.6
no. IPs contributing to tune shift	3	2	2	2	2
max. total beam-beam tune shift	0.01	0.021	0.028	0.01	0.01
beam circulating current [A]	0.584	1.12	0.089	0.412	0.401
RF voltage [MV]	16			16	22
rms bunch length [cm]	7.55			7.55	7.55
IP beta function [m]	0.55	$0.55 \qquad 0.73 ightarrow 0.15$		0.3	0.9
init. rms IP spot size $[\mu m]$	16.7	15.6 ightarrow 7.1	24.8 ightarrow 7.8	4.3	5.3
	1	•	•		
Stored energy [MJ]	362	694		601	4573
Peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	1	(7.4)		5	5

□ Starting parameters driven by design pileup of ~140

- Based on 25 ns bunch spacing
- Can we get better conditions with smaller spacing?

5ns spacing

Different approaches

- Keep total current constant
 - Same peak luminosity, 5 times smaller pileup
 - □ Beware:

$$L \propto \frac{N^2 \times n_b}{\varepsilon \beta}$$

- One needs to compensate with smaller beams (acting both on emittance and optics)
- Increase current to get higher luminosity for same pileup
 - Theoretically up to a factor 5 in peak luminosity
 - □ But linear increase in stored energy:
 - □ How many dumps/abort gaps would we need?
 - □ Can we build injection protection devices?
 - $\hfill \mbox{ All this could result in a much more inefficient fill schemes...}$
- Anything in between

Some realistic estimates

- Assuming the limits in the injection chain (after all upgrades)
 - Max charge ~2.5e11 per 25 ns interval
 - Min emittance ~1 µm

We would probably have to marginally increase the current to keep luminosity constant

We could probably get not more than a factor 2 in total luminosity

Experiments perspective

- Smaller bunch spacing useful only if able to distinguish bunches
- □ Few aspects identified so far
 - DAQ/Trigger electronics: OK!
 - Modern FPGAs can be clocked today at 400 MHz
 - Electronics dead time scales in clock cycles rather than absolute time
 - Buffer occupancies depend on Trigger rate rather than bunch spacing
 - Detector
 - □ Rate capability
 - Depending mostly on luminosity (low pileup vs high lumi approach)
 - Online resolution for first level trigger
 - Can we distinguish between close bunches?
 - Offline performance
 - Effect of out of time pileup from close bunches

L1 Trigger approach

 \square For VBF/VV scattering we need to cover up to η ~4 but

- Do we need to trigger on jets at all?
- Up to which η do we need to trigger on VV decay products?
 ⇒ acceptance vs occupancy and fake rate
- To be studied

Muons

□ Offline performance should be OK with existing technologies

- Online time resolution of ~1ns needed to distinguish crossings at L1 trigger level
 - RPC: OK with strips not longer than ~1m; double with double ended readout and mean timer

 \square Question is rate capability/ η coverage

- Micro pattern detectors: time resolution dominated by fluctuations on primary cluster formation
 - Depending on drift length:
 GEMs better than MM
- TGC: time response not adequate
 - □ Hits not contained within 5ns
 - Using TGCs in the forward region would imply no effective pileup reduction at trigger level

Muon trigger coverage

- \Box Micro-pattern or TGCs for triggering at higher η ?
 - Lose pileup mitigation effect because it's hard to resolve BCs

Calorimeters

Trigger time resolution shouldn't be critical but need to be studied in detail

- Getting to ~ns even with slow LAr calorimeter
- Trigger may set requirements on detector technology
- □ Technologies:
 - Scintillation calorimeters: concerns on radiation hardness for the endcap region (η > 2.5)
 - Liquid noble gas detectors are intrinsically slow:
 - Influence on measured energy fluctuations from all crossings occurring within typical peaking time (~40 ns)
 - $\hfill\square$ Limited effective pileup reduction with smaller bunch spacing
 - $\hfill\square$ Reduced shaping time implies higher noise: possible impact on trigger of low p_T objects
 - □ Thinner gaps?
 - □ With higher Z liquid (Kr,Xe) to compensate for sampling ratio?

□ Silicon sampling calorimeters? Can we afford cost? Rad hardness?
□ We should be thinking of an heterogeneous approach vs η
□ Other ideas?

31/10/13

Initial conclusions

- So far we haven't identified a showstopper against running with short bunch spacing
- On the other hand the detector technology to fully benefit from the spacing need to be investigated further
 - Limited effective pileup reduction for slow detectors
 - Trigger limitations not allowing to distinguish close crossings

- □ So far only limited effort
- Complete list of questions to address
- Produce some reasonable occupancy simulations
- Address inner tracker
- Evaluate different scenarios
 - Peak lumi vs beam parameters
 - Possible intermediate spacings between 5 and 25
- Let us know if you are interested in contributing to the discussions