The Twin Higgs: Can Naturalness Hide?

Twin Higgs: Zackaria Chacko, Hock-Seng Goh, RH hep-ph/0506256 Folded SUSY: Brudman, Chacko, Goh, RH hep-ph/0609152

Liberal use of Nathaniel's work.

Discussions N. Arkani-Hamed, N. Craig, Z. Chacko, G. Perez.

Where is everybody?

- LHC run I:
 We found a Higgs. Nothing else so far.
- * We know how EW symmetry is broken.
- * The burning question:
 Is the EW scale natural or tuned?

Our hope:

LHC will address this Question. (Evidence of naturalness will be found).

This may still happen in run II. But what if it doesn't? Is the world tuned?

Naturalness and LHC

Why did we expect LHC to find the evidence for naturalness?

Naturalness and LHC

Why did we expect LHC to find the evidence for naturalness?

NP is related to the SM top by a symmetry. NP is around a TeV.

Colored NP at a TeV! Will be produced abundantly at LHC!

Naturalness and LHC

Why did we expect LHC to find the evidence for naturalness?

NP is related to the SM top by a symmetry. NP is around a TeV.

Colored NP at a TeV! Will be produced abundantly at LHC!

Not Necessarily True.

Burdman, Chacko, Goh, RH (06')

Chacko, Goh, RH (05')

Outline

- Review: Twin Higgs
 - The Mechanism.
 - Varieties of twin models.
- What can LHC discover?
- What can Future Colliders Discover?
- * A no lose theorem?

To "prove" a theorem we should pick the difficult path at every step.

The Mechanism.

The Higgs is a PNGB of an approximate SU(4).

A Toy Example

* A global SU(4) symmetry w/ one fundamental:

$$V(H) = -m^{2}|H|^{2} + \lambda|H|^{4}$$

$$\langle |H|^{2} \rangle = \frac{M^{2}}{2\lambda} \equiv f^{2}$$

$$SU(4) \xrightarrow{SU(3)} \xrightarrow{SU(3)}$$

$$SU(4) \xrightarrow{SU(3)} \xrightarrow{SU(3$$

A Toy Example

* A global SU(4) symmetry w/ one fundamental:

$SU(2)_A \times SU(2)_B$

★ Gauge a subgroup (a.k.a Z₂ orbifold of SU(4)):

* In some basis, H transforms as

$$H = \begin{pmatrix} H_A \\ H_B \end{pmatrix}$$
 6 eaten.
1 Goldstone left.

* Gauging $SU(2)_A \times SU(2)_B$ breaks global SU(4).

* At I-loop:

 $\Delta V =$

Does not give a Goldstone mass.

(Global Symmetry) + (Discrete Symmetry)

Quadratic terms are globally symmetric. No quadratic divergences.

Quartic terms can violate global symmetry. Goldstone mass only log divergent.

$SM_A \times SM_B$

- * Double all of the SM. Impose Z_2 . (a.k.a orbifold of SU(6)×SU(4) by a Z_2).
- * In particular $\mathcal{L} \supset y_t H_A \bar{t}_A t_A + y_t H_B \bar{t}_B t_B$

*Z*₂: quadratic divergence has the form * $c\Lambda^2 \left(|H_A|^2 + |H_B|^2 \right)$

$$c\Lambda^2 \left(|H_A|^2 + |H_B|^2 \right)$$

SU(4) invariant.

SU(4) breaking

 t_A, t_B

Radiative corrections induce

Ж

$$\Delta V = \kappa \left(|H_A|^4 + |H_B|^4 \right)$$

with
$$\kappa \sim \frac{y_t^4}{16\pi^2} \log \frac{\Lambda}{f}$$

Goldstone mass is $m_h \sim \frac{y_t^2}{4\pi} f$.

Adding mixed "top partners" at 5-6 TeV keeps this quartic finite with a correct Higgs mass.

$$egin{aligned} Q_L &= & ({f 6}, {f ar 4}) \ &= & ({f 3}, {f 2}; {f 1}, {f 1}) + ({f 1}, {f 1}; {f 3}, {f 2}) + ({f 3}, {f 1}; {f 1}, {f 2}) + ({f 1}, {f 2}; {f 3}, {f 1}) \end{aligned}$$

Soft Breaking

* The potential as is gives $v_A = v_B \sim \frac{f}{\sqrt{2}}$

* But then $\Lambda \sim 4\pi f$ is too low.

* Add
$$V_{soft} = \mu^2 |H_A|^2$$
 to get $v < f$.

* A mild cancelation needed to get EW scale

$\Lambda({\rm TeV})$	$f_{\rm (GeV)}$	$M_{\rm (TeV)}$	$M_{B({\rm TeV})}$	$\mu({\rm GeV})$	$m_h({ m GeV})$	Tuning
10	800	6	1	239	122	0.134
6	500	5.5	1	145	121	0.378
10	800		0	355	166	0.112
6	500		0	203	153	0.307

So let's summarize the moving parts...

Sketch - Weak Coupling

Sketch - Strong Coupling

With these moving parts we have a natural model. Yet all new states below a few TeV are complete SM singlets.

LHC signatures will be subtle at best.

Still, what are its signatures? LHC? Higgs Factory? 100 TeV?

Where can we look for signs of NP?

Where can we look for signs of NP?

Precision Higgs tests:

Modified Higgs couplings and invisible decays.

Precision Higgs

* All SM Higgs couplings are universally suppressed:

$$\Gamma_{h\to X} = \cos^2\left(\frac{v}{f}\right)\Gamma_{h\to X}^{\mathrm{SM}} \approx \left(1 - \frac{v^2}{f^2}\right)\Gamma_{h\to X}^{\mathrm{SM}}$$

- * Ratios of Higgs rates are SM-like.
- * A correlated invisible decay

$$\Gamma_{h \to \text{inv}} = \sin^2 \left(\frac{v}{f}\right) \Gamma_{h \to b\bar{b}}^{\text{SM}} \approx \frac{v^2}{f^2} \Gamma_{h \to b\bar{b}}^{\text{SM}}$$

(assuming the b Yukawa respects the $\mathbb{Z}_2 \parallel$).

* Both are set by the tuning in the model, $\frac{2v^2}{f^2}$.

Precision Higgs

Precision Higgs

Non-Colored Partners

* But what if we came up with a model in which h there is no tree level mixing?

$$\delta Z_h, \delta m_h^2 \sim \frac{h}{2} - - - \frac{h}{2}$$
$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} \delta Z_h (\partial_\mu h)^2 + \dots$$

All Higgs couplings are modified by δZ_h . Of Order 1% modifications.

torn from Craig, Englert, McCullough 1305.5252.

Where can we look for signs of NP?

UV Completion - linear model: A heavy Higgs. Decays to invisibly or to W's, Higgses, tops.

Heavy Higgs

- * The heavy Higgs decays ~50% invisibly.
- * The rest of the BR is dominated by WW, hh, and tt.

May Be LHC accessible. (see Nate's talk)

Where can we look for signs of NP?

UV Completion - linear model: Re-do of the search for naturalness, But now at a few TeV.

S. Chang, L. Hall, N. Weiner (06) N. Craig, K. Howe (13)

Twin SUSY

- Introduce SUSY at ~few TeV.
- MSSM solves
 the big hierarchy.
 The scale *f* is natural.
- Doubling of MSSM
 Does the last bit,
 from f to v.

Stops accessible only at 100 TeV.

S. Chang, L. Hall, N. Weiner (06) N. Craig, K. Howe (13)

Twin SUSY

- Introduce SUSY at ~few TeV.
- MSSM solves the big hierarchy. The scale f is natural.

Stops accessible only at 100 TeV.

Where can we look for signs of NP?

UV Completion - non-linear model: Strong dynamics at 5-10 TeV. Resonances...

New Strong Dynamics

* We imagine new QCD-like dynamics at 5-10 TeV.

* The Higgs doublet is a pion of this "techni-QCD".

New Strong Dynamics

* We imagine new QCD-like dynamics at 5-10 TeV.

* The Higgs doublet is a pion of this "techni-QCD".

Weak Resonances

- * What is the 100 Tev sensitivity to weakly charged techi-sectors? (for any composite Higgs setup).
- We have one precedent for probing a strong sector with external weak probes:

Weak Resonances

* It seems reasonable that there will be

- Wide W'-like states (rho-like) going to Higgses (pions).
- Narrower states that must undergo weak decay.
- Pair produced states. • Pair produced states. $10^3 = \frac{10^3}{10^2} = \frac{1$

Calls for a taxonomical study based on Quantum numbers and spins of resonances.

Where can we look for signs of NP?

The Top Partners: Direct production of top partners (or other SMB states).

Colorless Tops

Minimally we have a coupling of the partner to the Higgs:

- Partner decays invisibly background study needed.
- Partner could decay visibly, Hidden-valley style! (high multiplicity from hidden showers, displaced vertices, etc.)

Cosmology

- * Twin baryons could be dark matter.
- * Light twin matter is dangerous during BBN.
 - Small Z_2 breaking in light yukawa sector. Make twin matter Heavier than a few GeV. (Barbieri, Gregiore, Hall)
 - More entropy production in our QCD transition?
 - Late inflation?

* LHC implications are drastic enough to overshadow these issues.

Conclusion and Outlook

- * We have natural models with colorless partners (including some models I did not discuss).
- * Twin Higgs can be remarkably elusive at LHC.
- * Seems within reach of a 100 TeV machine & TLEP:
 - Precision Higgs studies and invisible decay (or hidden valley decays).
 - Producing UV completion states.
 - Producing top partners.

A no-loose theorem is within reach.

Deleted scenes.

LHC Signals

* A standard model Higgs.

LHC Signals

- * A standard model Higgs.
- * If we are luck we can measure-
 - Higgs decay to invisibles, $BR \sim O(v^2/f^2)$.
 - Modification of $ZZh, WWh, tth, h^3, \dots$ also of O(v/f). (correlations).

LHC Signals

- * A standard model Higgs.
- * If we are luck we can measure-
 - Higgs decay to invisibles, $BR \sim O(v^2/f^2)$.
 - Modification of $ZZh, WWh, tth, h^3, \ldots$ also of O(v/f). (correlations).
- If we are *really* lucky (work in progress):
 Twin hadrons decay back to SM with displaced vertices. A "Hidden Valley" signal (Strassler and Zurek).

Usually:

Supersymmetry commutes with gauge transformations.

Superpartners always have the same quantum numbers as SM counterparts.

How can we get non-colored partners?

Inspiration: The Large-N Orbifold Correspondence

Usually:

Supersymmetry commutes with gauge transformations.

Superpartners always have the same quantum numbers as SM counterparts.

How can we get non-colored partners?

Inspiration: The Large-N Orbifold Correspondence

t

Usually:

Supersymmetry commutes with gauge transformations.

Superpartners *always* have the same quantum numbers as SM counterparts.

How can we get non-colored partners?

Inspiration: The Large-N Orbifold Correspondence

Usually:

Supersymmetry commutes with gauge transformations.

Superpartners always have the same quantum numbers as SM counterparts.

How can we get non-colored partners?

$$\begin{array}{cccc} t & \xleftarrow{Z_2} & t' \\ Q^{\alpha} & & & \\ \widetilde{t} & & & \\ \end{array}$$

Inspiration: The Large-N Orbifold Correspondence

Usually:

Supersymmetry commutes with gauge transformations.

Superpartners always have the same quantum numbers as SM counterparts.

How can we get non-colored partners?

Inspiration: The Large-N Orbifold Correspondence

Usually:

Supersymmetry commutes with gauge transformations.

Superpartners always have the same quantum numbers as SM counterparts.

How can we get non-colored partners?

Inspiration: The Large-N Orbifold Correspondence

Usually:

Supersymmetry commutes with gauge transformations.

Superpartners always have the same quantum numbers as SM counterparts.

How can we get non-colored partners?

Inspiration: The Large-N Orbifold Correspondence

Usually:

Supersymmetry commutes with gauge transformations.

Superpartners always have the same quantum numbers as SM counterparts.

How can we get non-colored partners?

Inspiration: The Large-N Orbifold Correspondence

Folded SUSY

* The Higgs is protected twice:

Supersymmetric

Folded-Supersymmetric

We get to choose which states to keep at low energies.