
B+L at 100 TeV
part 1

Valya Khoze

IPPP Durham

1. Baryon + Lepton number violation in the Standard Model

- Electroweak vacuum has a nontrivial structure (!) [SU(2)-sector]
- The saddle-point at the top of the barrier is the sphaleron. New EW scale ~ 10 TeV
- Transitions between the vacua change B+L (result of the ABJ anomaly):
 Delta (B+L)= 3 x (1+1); Delta (B-L)=0
- Instantons are tunnelling solutions between the vacua. They mediate B+L violation
- 3 x (1 lepton + 3 quarks) = 12 fermions
 12 left-handed fermion doublets are involved
- There are EW processes which are not described by perturbation theory!

$$q + q \rightarrow 7\bar{q} + 3\bar{l} + n_W W + n_Z Z + n_h H$$

B+L at very high energies

- The sphaleron saddle-point solution in the EW sector is discovered in 1984.
 10 TeV is the new scale in the SM.
- The 1985 paper by Kuzmin, Rubakov & Shaposhnikov opens up the new research arena: electroweak baryon non-conservation and baryogenesis in the Early Universe.
- Ringwald in his 1990 paper triggers enormous interest (& controversy) in the theory community in EW baryon and lepton number violating processes at high energy collisions.
- 1990-1993: The instanton calculational formalism is being developed for EW baryon and lepton number violating processes at future hadron colliders: physics motivation applications to the SSC.
- In 1993 the SSC project is cancelled. The LHC at 14 TeV doesn't come close
 to the `minimal' ~30 TeV energy required to start probing the EW sphaleron
 barrier. This signals the end of the early golden age of B+L.

- Electroweak sector of the SM is always seen as perturbative. If these instanton processes can be detected —> a truly remarkable breakthrough in realising & understanding non-perturbative EW dynamics!
- B+L processes provide the physics programme which is completely unique to the very high energy pp machine. This cannot be done anywhere else.
- The B+L processes are accompanied by ~50 EW vector bosons; charged Lepton number can also be measured —> unique experimental signature of the final state — essentially **no backgrounds** expected from <u>conventional</u> <u>perturbative processes</u> in the SM.
- The rate of the B+L processes is still not known theoretically. There are
 optimistic phenomenological models with ~pb or ~fb crossections, and there
 are pessimistic models with unobservable rates even at infinite energy.
- New computational methods are needed. [2014 is not 1993 (or even 2003)]
- Since the final state is essentially backgroundless, the obesrvability of the rate can be always settled experimentally (if we have the 100 or 33 TeV machine).

2. Instanton approach

 All instanton contributions come with an exponential suppression due to the instanton action:

$$\mathcal{A}^{\text{inst}} \propto e^{-S^{\text{inst}}} = e^{-2\pi/\alpha_w - \pi^2 \rho^2 v^2}, \quad \sigma^{\text{inst}} \propto e^{-4\pi/\alpha_w} \simeq 5 \times 10^{-162}$$

- This is precisely the expected semiclassical price to pay for a quantum mechanical tunnelling process. Are we done?
- No! For the B+L violating process

$$q + q \rightarrow 7\bar{q} + 3\bar{l} + n_W W + n_Z Z + n_h H$$

- at leading order, the instanton acts as a point-like vertex with a large number of external legs
- As the number of W's, Z's and H's produced in the final state at sphaleron-like energies is allowed to be large, ~ 1/alpha, the instanton amplitude also starts growing exponentially.

Ringwald 1990

2. Instanton approach

Instanton is a classical solution in Euclidean spacetime (good for tunnelling)
 Gauge field (i.e. W's and Z's) instanton in the `singular gauge' is:

$$A^{\text{inst } a}_{\mu} = \frac{2}{g} \, \bar{\eta}^{a}_{\mu\nu} \, \frac{(x - x_0)^{\nu} \, \rho^2}{(x - x_0)^2 ((x - x_0)^2 + \rho^2)}$$

- When the Higgs VEV is turned on, this expression gets modified at large distances so that: $A^{\text{inst }a}_{\ \mu} \to e^{-m_W|x-x_0|}, \quad \text{as } (x-x_0)^2 \gg \rho^2$
- There is also the Higgs-field component of the instanton,

$$H^{\text{inst}} = v \left(\frac{(x - x_0)^2}{(x - x_0)^2 + \rho^2} \right)^{1/2}$$

 And there are fermion components, one for each left-handed doublet (instanton fermion zero modes),

$$\psi_L^{\text{inst}} = \frac{1}{\pi} \frac{\rho^2}{((x - x_0)^2 + \rho^2)^{3/2}} \frac{(x - x_0)^{\mu}}{|x - x_0|} \, \sigma_{\mu} \cdot \chi_{\text{Grassm}}$$

And no anti-fermion solutions! B+L violation is automatic with instantons.

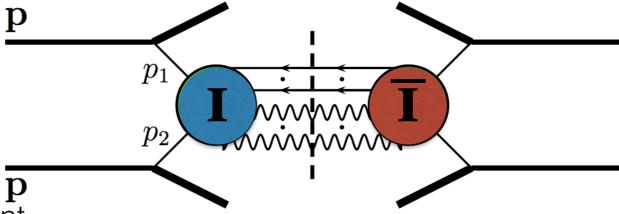
2. Instanton approach

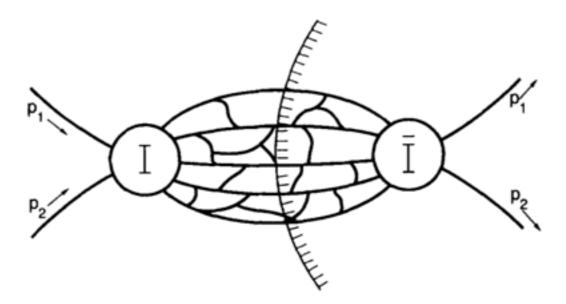
Ringwald 1990

Start with the off-shell Green function

$$\int (D\psi)(DA)(DH)\,\psi(x_1)\ldots\psi(x_{12})\,A(y_1)\ldots A(y_{n_W+n_Z})\,H(z_1)\ldots H(z_{n_h})\times e^{-S}$$

- substituting for each field = instanton + fluctuation; integrate out the fluctuations to the leading non-vanishing order.
- To get the Amplitude: analytically continue to Minkowski space, Fourier transform instanton external legs to momentum space, go on-shell and LSZ amputate, e.g.


$$A^{\text{inst}\,a}_{\ \mu}(x_i) \to \frac{4i\pi^2\rho^2}{g} \frac{\bar{\eta}_{\mu\nu}^a p_i^{\nu}}{p_i^2(p_i^2 + m_W^2)} e^{ip_i x_0} \to \frac{4i\pi^2\rho^2}{g} \frac{\bar{\eta}_{\mu\nu}^a p_i^{\nu}}{p_i^2} e^{ip_i x_0}$$

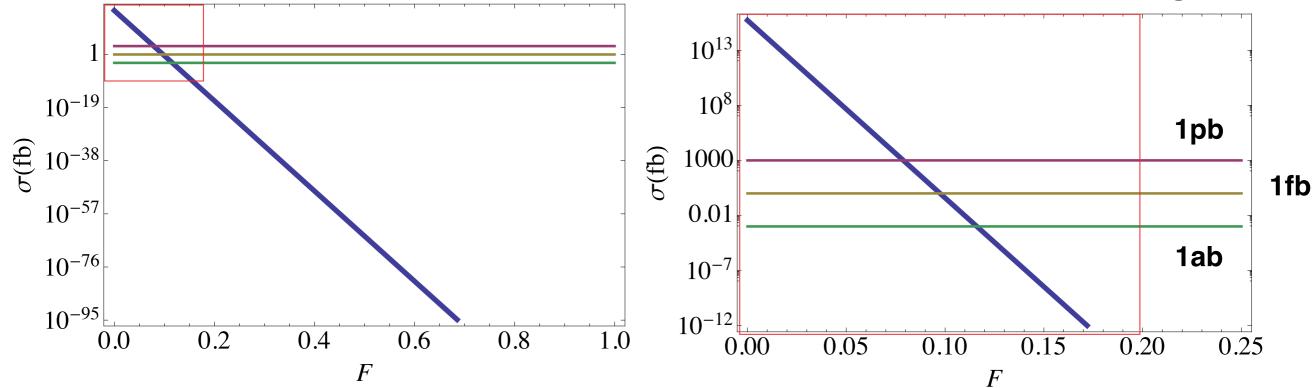

$$H^{\text{inst}}(x_j) \to -\frac{2\pi^2 \rho^2 v}{(p_j^2 + m_H^2)} e^{ip_j x_0} \to -2\pi^2 \rho^2 v e^{ip_j x_0}$$

 After integrating over the instanton size of the multiple field insertions above one gets the exponential enhancement with energy.

3. Instanton-Antiinstanton valley VVK & Ringwald 1991

- Crossection is obtained by |squaring| the instanton amplitude.
- Final states have been instrumental in combatting the exp. suppression.
- Now also the interactions between the final states (and the improvement on the point-like I-vertex) are taken into account.
- Use the Optical Theorem to compute *Im* part of the FES amplitude in around the Instanton-Antiinstanton configuration.
- Higher and higher energies correspond to shorter and shorter I-Ibar separations R. At R=0 they annihilate to perturbative vacuum.
- The suppression of the crossection is gradually reduced with energy....until it completely disappears, but this is where the instanton and antiinstanton have mutually destructed -> no B+L.

Instanton-Antiinstanton optimistic estimate


VVK & Ringwald 1991

$$\hat{\sigma}_{qq}^{\mathrm{inst}} \approx \frac{1}{m_W^2} \left(\frac{2\pi}{\alpha_W}\right)^{7/2} \times \exp\left[-\frac{4\pi}{\alpha_W} F_{\mathrm{hg}}\left(\frac{\sqrt{\hat{s}}}{4\pi m_W/\alpha_W}\right)\right]$$

$$\simeq (5.28 \times 10^{15} \text{ fb}) \times \exp \left[-\frac{4\pi}{\alpha_W} F_{\text{hg}} \left(\frac{\sqrt{\hat{s}}}{4\pi m_W / \alpha_W} \right) \right] \quad \text{F = 1 at E=0}$$

The holy grail function F

0<F<1 at large E

The holy grail function F

The holy grail function F

Instanton-Antiinstanton optimistic estimate

VVK & Ringwald 1991

Ringwald 2002

$$\hat{\sigma}_{qq}^{\mathrm{inst}} \approx \frac{1}{m_W^2} \left(\frac{2\pi}{\alpha_W}\right)^{7/2} \times \exp\left[-\frac{4\pi}{\alpha_W} F_{\mathrm{hg}}\left(\frac{\sqrt{\hat{s}}}{4\pi m_W/\alpha_W}\right)\right]$$

$$\simeq (5.28 \times 10^{15} \text{ fb}) \times \exp \left[-\frac{4\pi}{\alpha_W} F_{\text{hg}} \left(\frac{\sqrt{\hat{s}}}{4\pi m_W/\alpha_W} \right) \right]$$

The holy grail function $F \longrightarrow F 0.5$

First few terms in the energy-expansion of the holy grail:

$$F_W(\epsilon) = 1 - \frac{3^{4/3}}{2} \epsilon^{4/3} + \frac{3}{2} \epsilon^2 + \mathcal{O}(\epsilon^{8/3}) + \dots$$

 $\epsilon = \sqrt{\hat{s}}/(4\pi m_W/\alpha_W) \simeq \sqrt{\hat{s}}/(30 \text{ TeV})$

$([qd]_{-50}]_{0}^{0}$ $(R/\rho)_{*} < 1$ $\sqrt{\hat{s}}/(4\pi M_{w}/\alpha_{w})$

Mattis, Phys. Rept.1992

is a comprehensive review of the original work on the holy grail

4. Pessimistic vs optimistic pictures

Pessimistic view:

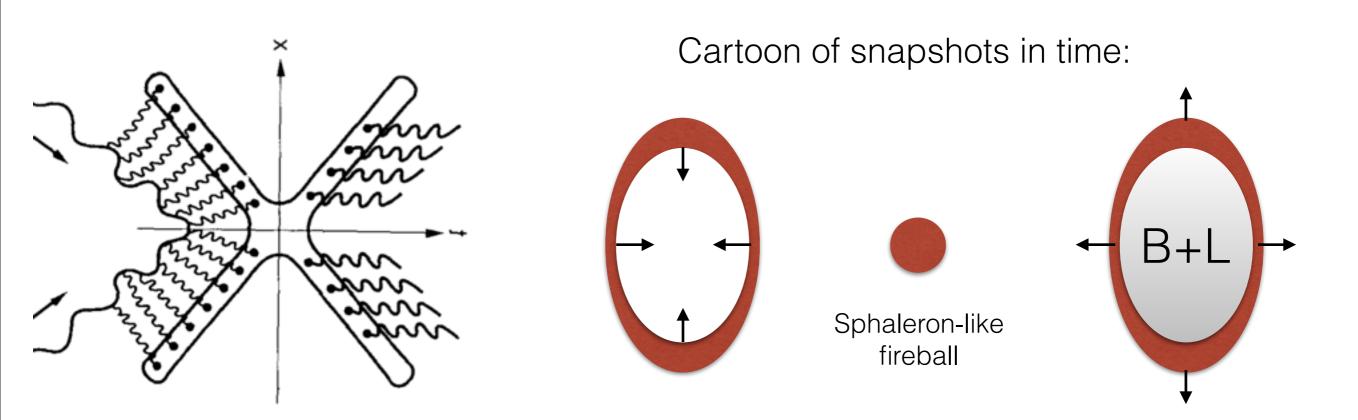
The sphaleron is a semiclassical configuration with

$$\text{Size}_{\text{sph}} \sim m_W^{-1}$$
, $E_{\text{sph}} = \text{few} \times m_W / \alpha_W \simeq 10 \,\text{TeV}$.

It is 'made out' of $\sim 1/\alpha_W$ particles (i.e. it decays into $\sim 1/\alpha_W$ W's, Z's, H's).

$$2_{\text{initial hard partons}} \rightarrow \text{Sphaleron} \rightarrow (\sim 1/\alpha_W)_{\text{soft final quanta}}$$

The sphaleron production out of 2 hard partons is unlikely.


Assumptions:

- (1) the intermediate state had to be the sphaleron;
- (2) the initial state was a 2-particle state;
- (3) that one cannot create $(\sim 1/\alpha_W)_{\text{soft final quanta}}$ from $2_{\text{initial hard partons}}$.

4. Pessimistic vs optimistic pictures

Optimistic view:

- 1. It is not the sphaleron which is directly created in the initial collision
- 2. Instantons in Minkwoski space are not point-like configurations; they are localized near the light-cone:

5. The BLRRT approach (from 1/alpha to 2 initial quanta)

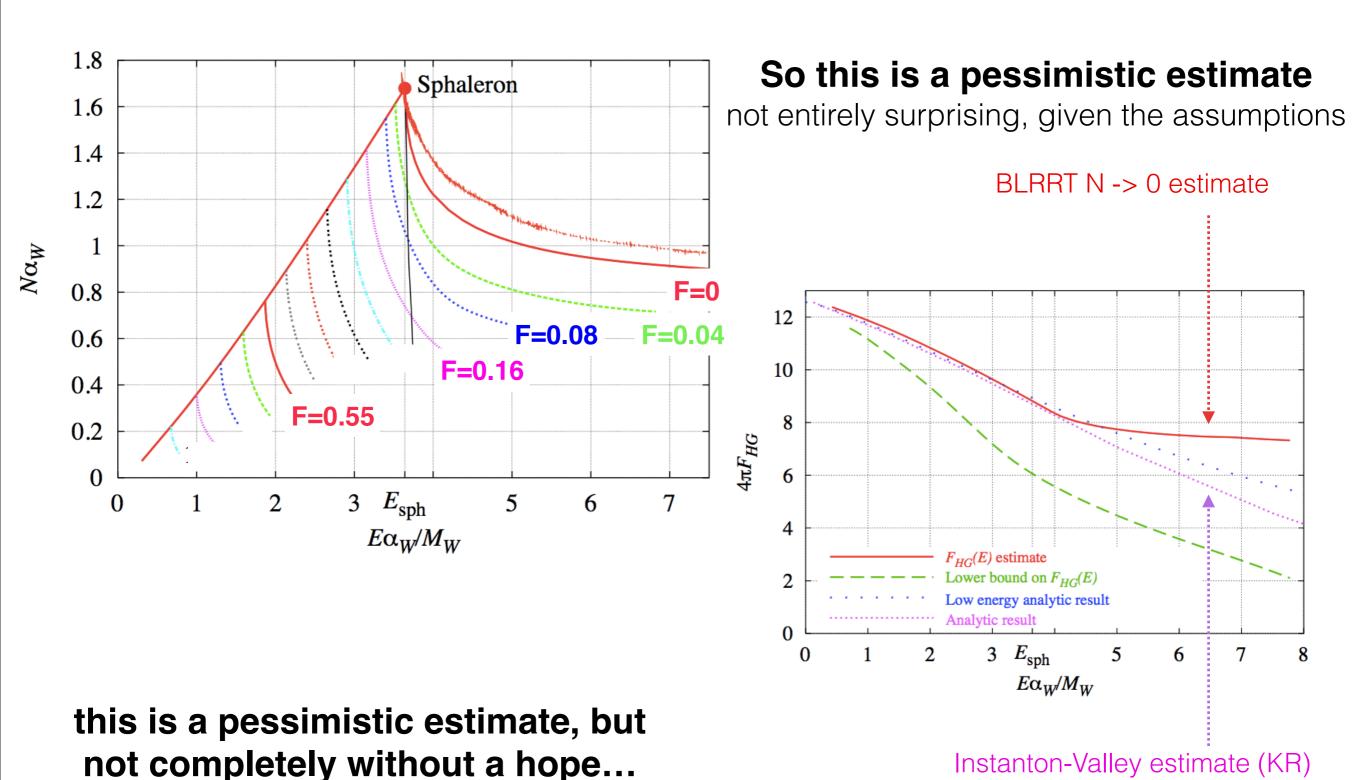
Construct an auxiliary solution with the initial data chosen that:

- (1) the initial state has $N = \tilde{N}/\alpha_W$ particles with \tilde{N} fixed and $\alpha_W \to 0$
- (2) the energy also scales as $E = \tilde{E}/\alpha_W$
- (3) for simplicity also assume spherical symmetry.

The probability of tunnelling from such *multiparticle* state is computed semiclassically:

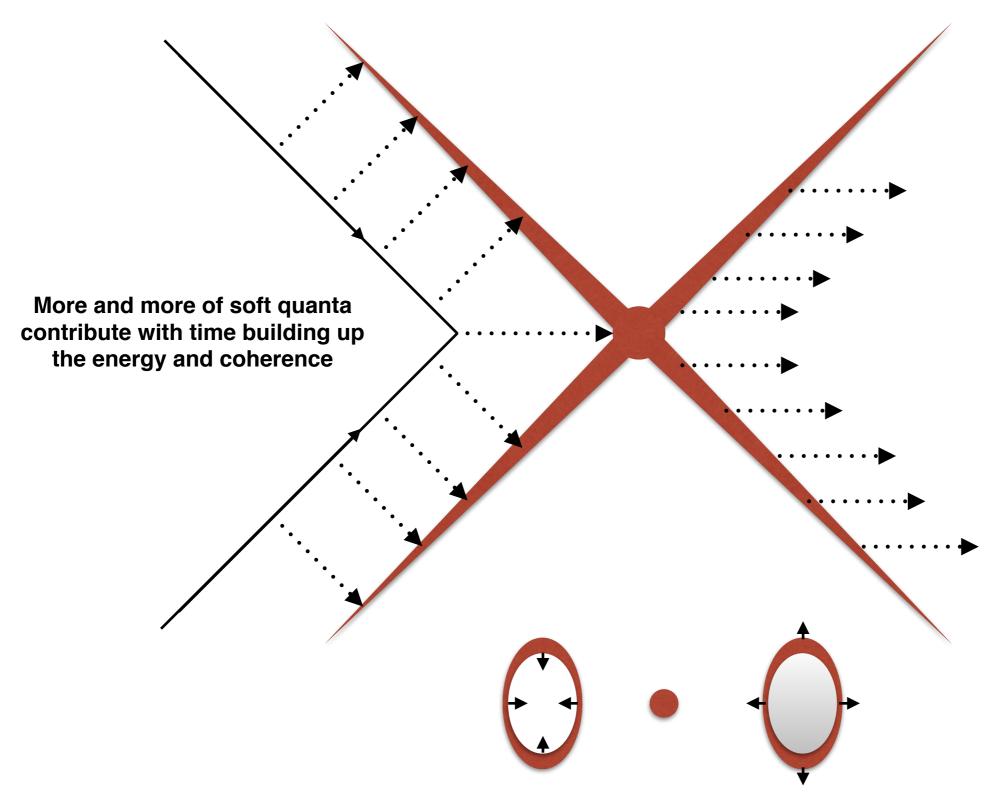
$$\sigma \sim \exp\left(-\frac{4\pi}{\alpha_W}F_{\tilde{N}}(\tilde{E})\right)$$

For fixed \tilde{N} and $E \sim E_{\rm sph}$ the rate will be unsuppressed. But this is not the 2-particle in-state.


Conjecture that the holy grail function relevant for the 2-particle initial state is obtained by taking the $\tilde{N} \to 0$ limit of the overall rate,

$$\lim_{\tilde{N}\to 0} F_{\tilde{N}}(\tilde{E}) = F_0(\tilde{E}) \simeq F_{\text{hg}}(\tilde{E})$$

The suppression will arise from this limit (not from the lack of Energy!)


Bezrukov, Levkov, Rebbi, Rubakov & Tinyakov 2003

5. The BLRRT approach (from 1/alpha to 2 initial quanta)

Bezrukov, Levkov, Rebbi, Rubakov & Tinyakov 2003

My favourite picture: for QCD-instantons and for Weak-instantons

- Processes with high multiplicities of EW particles in the final state (say 50) at energies ~3 Esphaleron (>30 TeV) provide us with physics opportunities which are completely unique to the very high energy pp machine.
 This cannot be done anywhere else.
- These are not only non-perturbative B+L violating processes, but also B+L preserving high multiplicities processes where at these energies (at least naively/intuitively) perturbative unitarity appears to break down somewhat in parallel with opening up sphaleron transition channels.

Next step (now) — the List of things to do:

- 1. ...
- 2. ...
- 3. ...
- 4. ...