Measurement of the weak phase ϕ_s from $B_s^0 \rightarrow J/\psi \phi$ decays.

Vasilis Syropoulos

v.syropoulos@nikhef.nl

10 May 2014

- Is it the complete story?
 - Direct searches: ATLAS, CMS... .
 - Indirect searches: LHCb, Belle
- Rare decays.
- Non SM CP-Violation. ← this talk.

[Dave Goldberg]

"CP-violating effects in the time-dependent angular distribution of $B_s^0 \rightarrow J/\psi \phi$ play a key role for the search of new physics."

[R.Fleischer: PhysRevD.79.014005]

- 1970: Existence of c quark in $K_L \rightarrow \mu^+ \mu^-$. [Phys.Rev.D2,1285,1970]
- 1987: Top quark mass from B^0 oscillations. [Phys.Lett.B192:245,1987]

V. Syropoulos (Nikhef)

- Oscillations: $B^0_{(s)} \leftrightarrow \bar{B}^0_{(s)}$. ϕ_s from $B^0_s/\bar{B^0_s} \rightarrow J/\psi(\rightarrow \mu\mu)\phi(\rightarrow KK)$.

Relative phase difference \rightarrow access ϕ_s

- Oscillations: $B^0_{(s)} \leftrightarrow \bar{B}^0_{(s)}$. ϕ_s from $B^0_s/\bar{B^0_s} \rightarrow J/\psi(\rightarrow \mu\mu)\phi(\rightarrow KK)$.

Relative phase difference \rightarrow access ϕ_s

Assuming tree decays only:

$$\begin{split} \phi_{s}^{\text{SM}} \simeq -2\beta_{s} &= -0.0364 \pm 0.0016 \text{ [Phys. Rev. D84 (2011)033005]}, \\ \beta_{s} &\equiv \arg\left[-\left(V_{ts}V_{tb}^{*}/V_{cs}V_{cb}^{*}\right)\right]. \end{split}$$

Unknown processes: $\phi_s = \phi_s^{SM} + \Delta^{NP}$

LHCb detector

"CP-violating effects in the time-dependent angular distribution...." [R.Fleischer]

"CP-violating effects in the time-dependent angular distribution...." [R.Fleischer]

 ϕ_s is the amplitude of the decay time pdf oscillations. Γ , $\Delta\Gamma$?

[[]PhysRevD.87.112010]

- Very clean signal.
- Around 27k candidates with the 1fb^{-1} of 2011 run.

V. Syropoulos (Nikhef)

- Angular analysis $(\theta_{\mu}, \theta_{K}, \phi_{h})$: $J/\psi\phi$ is a CP-odd/even mixture.
- Flavor tagging: $J/\psi\phi$ came from either B_s^0/\bar{B}_s^0 .

- Angular analysis $(\theta_{\mu}, \theta_{K}, \phi_{h})$: $J/\psi\phi$ is a CP-odd/even mixture.
- Flavor tagging: $J/\psi\phi$ came from either B_s^0/\bar{B}_s^0 .

- Angular analysis $(\theta_{\mu}, \theta_{K}, \phi_{h})$: $J/\psi\phi$ is a CP-odd/even mixture.
- Flavor tagging: $J/\psi\phi$ came from either B_s^0/\bar{B}_s^0 .

- Angular analysis $(\theta_{\mu}, \theta_{K}, \phi_{h})$: $J/\psi\phi$ is a CP-odd/even mixture.
- Flavor tagging: $J/\psi\phi$ came from either B_s^0/\bar{B}_s^0 .

We gain sensitivity to ϕ_s from:

- Angular analysis $(\theta_{\mu}, \theta_{K}, \phi_{h})$: $J/\psi\phi$ is a CP-odd/even mixture.
- Flavor tagging: $J/\psi\phi$ came from either B_s^0/\bar{B}_s^0 .

We take good control of:

Time and angular resolution, time and angular acceptances, mass model, peaking backgrounds, reflections, s-wave contributions,

data stability between runs, factorization of acceptances and observables, S-P waves coupling, sFit technique. ...

V. Syropoulos (Nikhef)

 ϕ_{s} from $B_{c}^{0} \rightarrow J/\psi\phi$

Results

Results

- Most precise ϕ_s measurement.
- Determination of the $\Delta\Gamma_s$ sign.
- No sign of NP yet.

$$\begin{split} \phi_s &= 0.07 \pm 0.09(\text{stat}) \pm 0.01(\text{syst}) \text{ rad} \\ \Delta\Gamma_s &= 0.100 \pm 0.016(\text{stat}) \pm 0.003(\text{syst}) \text{ ps}^{-1} \\ \Gamma_s &= 0.663 \pm 0.005(\text{stat}) \pm 0.006(\text{syst}) \text{ ps}^{-1} \end{split}$$

Near future:

- Combine with $B_s^0 \to J/\psi \pi^+ \pi^-$.
- Sub-leading penguin contributions to $B^0_s
 ightarrow J/\psi \phi$.
- 2fb⁻¹ more analyzed: ~ 2 improvement on $\sigma(\phi_s)$.
- Run II: Factor \sim 3 in total.

Thank you for your attention!

Back up (New Physics)

Buras: arxiv:0909.1333v2 [hep-ph]

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS	4G
$D^{0} - \bar{D}^{0}$	***	*	*	*	*	***	?	**
ϵ_K	*	***	***	*	*	**	***	**
$S_{\psi\phi}$	***	***	***	*	*	***	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?	**
$A_{\rm CP}\left(B \to X_s \gamma\right)$	*	*	*	***	***	*	?	*
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?	**
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?	**
$B \rightarrow K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*	*
$B_s \rightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*	***
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***	***
$\mu \rightarrow e \gamma$	***	***	***	***	***	***	***	***
$\tau \rightarrow \mu \gamma$	***	***	*	***	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***	*
d_e	***	***	**	*	***	*	***	*
$(g - 2)_{\mu}$	***	***	**	***	***	*	?	*

Chiang et al.: arXiv:0910.2929 [hep-ph]