CODALEMA : the radio detection of extensive air showers
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Observation of Ultra High Energy Cosmic Rays (UHECR)
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Conventional UHECR detection techniques
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Two detection techniques are basically used nowadays
to observe and to characterize UHECR :

Plastic scintillators (TA) or Cerenkov tanks (AUGER)
and fluorescence telescopes (TA and AUGER)

The Pierre Auger collaboration
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Sampling the particle density on the
ground

+ High duty cycle

+ Well developed and understood

- Only the shower end is analyzed

- Strongly model-dependent for

energy computation

Samplmg the atmosphere
excitation along the shower
+ Calorimetric measurement
+ Energy + Xmax X mass

- Low duty cycle
- Stereoscopic vision



The radio detection of cosmic rays
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e Larger and better at ultra high energies

— High duty cycle and very large surface to
reach significant statistics

— Event by event particle identification

e International Symposium on Future
Directions in UHECR Physics (UHECR2012)

— « Light » upgrades of the big instruments
on short time scale and toward low
energies

—  Pursue the R&D activities on alternative
solutions for a possible future giant
instrument

Aims of the radio detection R&D

= A complete technique :
direction, energy, mass...

= A competitive technique :

efficiency, duty cycle,

robustness, cost ...

== LOPES

KASCADE

== CODALEMA

Nancay

2000 2010 -

e The (long) history radio detection of EAS

1960 : prediction for a Cerenkov signal in
the radio domain (Askaryan)
1962 : geomagnetic effect predicted
(Khan and Lerche)
1965 : first experiments (Jelley et al)
1975 : the book is closed

e Various but incoherent results

e Technical difficulties

e Rise of particle and fluo. detection

e The renaissance of the radio detection

LOFAR wm
AERA

Early 2000 : CASA-MIA, EAS-TOP then
LOPES and CODALEMA

Mid-2000 : AERA, strong theoretical
activities

Early 2010 : LOFAR, GHz measurements

Malarglie
~ 2010

Nancay

AUGER




Radio emission from Extensive Air Showers
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vectors.

The different mechanisms
induce specific polarization
patterns for the radio signal

Different approaches to describe the resulting electric

field :

o Cerenkov radiation due to the charge excess (about 20
to 30% more electrons) : Askaryan effect (1962)

e Macroscopic models : radiation induced by a net
current ; MGMR, EVA codes...

e Microscopic approach : e+ and e- radiation in the
geomagnetic field B ; REAS3, SELFAS, ZHAires codes...

-;’1' t t t
(Ajf' E(x,t): 1 znq( ret) l@ nq( ret) +i2i Vq( ret)
—= ‘5:' 4ﬂ€0 R (I_Bn) ret 06t R(I_Bn) ret € at R(I_Bn) ret
Static field Charge variation Current variation

Sum of all static
contributions

(charge excess term)
Sum of all charges. The
electrons excess induces
a net charge

(geomagnetic term)
Sum of the current
produced by the e+/e-
deflected by the B field

SELFAS formalism (V.Marin et al.)
Effects of the air refractive index
are no included in this formula

The overall radio signal is correlated to the full
shower development



Measuring the radio electric signal
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CODALEMA : An ensemble of instruments at Nancay
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1.5 km

0.025 km* - 10 cabled
antennas — compact phased
array — External trigger

1 km* - 57 autonomous
stations —radio triggered

Scintillators : 2007 0.1 km” — 13 scintillators —
Autonomous Stations : 2011 et 2013 Trigger and off-line CR ident.
Compact array : 2013




Comparing CODALEMA to AUGER
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CODALEMA is equivalent to an elementary cell of A R ) T S i
the AUGER surface detector ! B M e e e

CODALEMA is about 10 times smaller than AERA. e, .

CODALEMA is not a large scale (i.e. high energy) radio stations — 13 km” — hybrid detection
cosmic ray observatory.




Comparing CODALEMA to LOFAR
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The LOFAR international station
at Nangay — 192 antennas

.......
s

CODALEMA covers a surface bigger LOFAR superterp (Netherlands)
than the LOFAR superterp in the —21x96 antennas — @ = 350 m
Netherlands.

CODALEMA = LOFAR LBA+HBA antennas combined
CODALEMA surrounds the NenuFAR array
3 complementary instruments...

The NenuFAR project (Nancay)
—19x96 antennas — @ = 400 m



The autonomous station array

HEP 2014 - LM - May 2014 - Naxos

Development of an new radio detection
station and a station array at Nancay :

To design a possible sensor for a next
generation observatory : an autonomous
radio trigger

To handle and master a prototype of an
antenna array : an ensemble of several
tens of detection stations in a known site
(closeness, simplicity)

To increase the capabilities of CODALEMA
to perform detailed measurement of
Extensive Air Showers : a new antenna
design.




Instrumental key items
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e A robust, linear wide-band antenna : a
dedicated LNA and successful design
(exported in AERA and NenuFAR)

e Modular (one board=one function), on-
board and upgradeable electronics :
Power, GPS, Trigger, Comm., ADC, PC...

e Radio self pollution limited : e
electromagnetic compatibility of the crate -
and the mechanical box tested in an
anechoic chamber and on site. A double EMC

barrier: crate and

e« A power network and a computing box with metallic
network (10 km of buried power cables
and optical fibers) : no solar panels nor
radio comm. network to deal with
(problem common to all scattered arrays)

e Analog first level trigger (orthogonal
choice compared to AERA). No permanent
digitization of the signals : a controlled
energy budget (~Y20W per station)

The dual channel

low noise amplifier
integrated into the
antenna head

10 km of cuttings

Ay 8 and gutters along
i the forest tracks

set and the roads.

Image 62010 1GN-Fance:



CODALEMA : the triggering strategy
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1 Station
Trigger Board :

Filters, discriminator,
Local oscillator,
Programmable |: ADC

logic (FPGA)

IJ_L>V PC:V 2 D

. Station
Station
] G
Main
DAQ
Coincidence
)~ reconstruction
—N\ —=) Angular mask
—/ = _:>_

GPS Signal processing
Timing processing
Event Building

:> Event transmission

==) Header transmission

Triggering strategy : multi-level selection

. : filtered signal to threshold comparison
on a dedicated board

. : sophisticated timing and/or pulse shape
discrimination on the board computer.

. : time coincidence between stations and
angular reco. on a master computer.

Storing and data saving scheme
o After L1 : full event are stored locally
o After L2 : event header at sent by the station

stations involved in the coincidences

o After L3 : full events are requested and sent by the

Data format developed for and adopted
from AERA (AUGER).

Data are stored off-line in a Firebird db for
monitoring, mining and archiving.



The transient sky : a brand new world
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A large fraction of the events concerns

only one or few stations : very local

noise sources

Antenna number
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A typical day at
Nangay :
mobile vs static
intense vs weak
spot vs diffuse ko

West 180( *

Despite a very severe regulation
in term of RFI, the radio-
astronomy station of Nangay is
surrounded by various parasitic
transient sources : planes, power
lines, power transformers, fences.

Permanent signals or periodic
bursts : identity of the sources
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A large fraction of the transient
sources has been identified,
characterized and localized

Selected strategy : Do not turn them
off. Try to become immune to their
emission ! Human activities are
(almost) everywhere...



Transient noise rejection methods
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Rejection yield : 94.2 % (T2) EAS have been steadily measured since

To be implemented in the T1 level

= more than a year.
Optimization at the T2 et T3 levels



Observing and analyzing cosmic ray events
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ws s The EAS has been seen by 33
O O stations. Missing stations
were busy (triggering on
noise transients).
Almost 1.5 km between the
o farthest stations.
« Wave form and spectral signature
e Coherence of the GPS times
e Arrival direction above the horizon
e Angular and temporal coincidence with
the scintillator array
o Already known properties are clearly

electric field lateral distribution



Measuring the basic shower properties
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Radio signal production

mechanisms
/’

The geomagnetic
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Radio “sees” at several hundreds of meters.
Radio “sees” very inclined showers



Measuring the basic shower properties
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Beyond basic properties : signal polarization
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e s . . . Radio signals are strongly polarized !
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Beyond basic properties : signal polarization

19 HEP 2014 - LM - May 2014 - Naxos
Z: . Amp“tUdes and /. The polarization is computed
0.02, Ola rization sz:feocl’;ifss 5" in a (E,n) frame SpeCIﬁC tO

o P S 5 each shower (where the
=l ol transverse current
* 0o On an event basis : \%— contribution cancels out) :
-0.02] H 3 4 n
- olarization angles are o
i & CODALEMA Iil Data o p 1 ” g ! 22 (EEJEVIJ)
coomemamosn  |——owe | Systematically ¥ R(y)=—t="
-0.05 0 0.0¢ n
e ) scattered around the S(E +E )
g,i n,i
T S mean value.
= A radial contribution
appears as a sinusoid !
E 500
I.IJZ 1 ‘ . . .
o ’ Oscillation in the
ooob : , experimental distribution
=150k b oo L 0.5 =
L i . = charge excess effect
1500»_"'"T"".'""T"“'""I""""'I_ - ‘ *+
: Without charge excess L ;
1000} SH B e !% }# .
- s B Location around the shower core
Rir g . _ &> polarization dispersion !
ot i The shower can be localized from
L ] : i the polarization values.
Ftomin iR AT AR o “90 180 270 a0 More precise than lateral
-1000 EE\?V (uV/m) 1000 2000 \|I(deg)

distribution of the electric field ?



Beyond basic properties : frequency studies
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Huege, Ulrich, Engel (Astrop. Phys. 2008)
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Conclusions : Is the radio detection technique ready ?
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e« A comprehensive and accurate technique ?

The electric field production mechanisms (geomagnetic, charge excess, refractive index)
are known and controlled over a large frequency range (few MHz to GHz)

Models are various and are (now) producing similar predictions
Complex electric field patterns observed are nicely matched by simulations

Reconstruction by individual timing or interferometry
Sub-degree angular resolution

Radio signal amplitude and energy correlations
Energy resolution of the order of 10-20% is achievable (radio can probably do better)
Fine comparison with models will bring higher precision

The less measured observable so far
Good sensitivity to the X, has been claimed (LOFAR) by comparison to simulations
Sensitivity to the longitudinal development of the shower is under study.

Several directions are explored : spectrum slope, wave front curvature, Cerenkov
contribution...



Conclusions : Is the radio detection technique ready ?
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e A competitive technique ?

No particular natural show stopper besides lightnings.

Human made parasitic transients is the most troublesome factor : Efficiency is fine but
purity is very low.

Optimization of the trigger strategies.

Development of an on-line composite trigger (CODALEMA compact array), T3 trigger
(CODALEMA and AERA) masking noise arrival direction.

At worst antenna + scintillator patch combination

The electric field quickly vanish with the distance to the shower in the current observation
band. Very good sensitivity to inclined showers.

Optimization of the signal to noise ratio combined to optimized triggers
Polarization and spectrum can reduce the number of sensors

Extend the antenna range down to lower frequencies (down to 15 MHz and below the AM
lines)

The sensor is a simple, compact, easy to deploy. No fluid, no light-tightness needed.
The sensor is rather cheap and the energy budget is controlled.

No integration efforts have been done yet but some ideas emerge (all-in-one solution,
smart phone technologies)



Conclusions : still new directions to explore
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Power Spectral Density { dBmivHz)

Frequency (MHz)

Fast and coherent
deceleration of particles

Improving the sensitivity toward low frequencies (down
to 10-15 MHz and 1.5-4 MHz) : extending the range !
Improving the sensitivity toward high frequencies (150
to 300 MHz) : looking for the Cerenkov signal.

The LNA is ready : adaptation of the radiators and the
front end filters.

Measuring the electric field vertical component : adding
a third radiator. Stronger constraint on the models,
higher sensitivity to the EAS properties.

The station is ready : available slot for a additional
digitization board.

Low frequency (<20 MHz)
mostly vertical polarization.
1/d attenuation

300 m
400 m

scale with E

Provide the shower core location

Provide a precise clock for absolute timing of
the shower development (sensitivity to X )

Hints for observations in the past !
Predicted by various models

500

1000
time (ns)

%% EXTASIS project at SUBATECH AND Nancay
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